Skip to main content
Log in

Determination of trehalose-6-phosphate in Arabidopsis thaliana seedlings by hydrophilic-interaction liquid chromatography–mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A hydrophilic-interaction chromatography (HILIC) method coupled to electrospray ionization mass spectrometry (ESI-MS) was developed for the determination of trehalose-6-phophate (Tre6P) in Arabidopsis thaliana seedlings. The method was optimized for MS detection and separation of Tre6P from its isomers, such as sucrose-6-phosphate, by testing eluent pH, type of organic solvent and alkalinizer, and gradient conditions. Tre6P could be resolved from matrix components within 28 min by using a water–acetonitrile gradient (0.2 ml/min) at pH 12 with piperidine as alkalinizer. The method was validated for concentrations between 25 and 4,000 nM Tre6P in A. thaliana seedling extracts. Seedlings were extracted with consecutive liquid-liquid and solid-phase extractions, and analyzed with HILIC-MS. Obtained accuracy (80–120 %) and precision (<24 %) demonstrated the suitability of HILIC-MS for determining Tre6P level variations in plants. The limit of detection (LOD) was 3.5 nM Tre6P in extracts corresponding to 4.1 pmol.g−1 fresh plant weight (FW). This is a considerable improvement with respect to anion-exchange chromatography (AEC)-MS (40 nM) and capillary electrophoresis-MS (80 nM). Furthermore, HILIC-MS analysis times were shorter than with AEC-MS (30 and 60 min, respectively). The applicability of the HILIC-MS method was demonstrated by the analysis of extracts from seedlings grown on medium containing 100 mM sorbitol or trehalose, resulting in mean Tre6P concentrations of 0.2 and 1.9 nmol.g−1 FW, respectively. Similar concentrations were found with AEC-MS. HILIC-MS was also evaluated at a high flow rate (2.0 ml/min). This high-speed method resolved the Suc6P and Tre6P peaks within 3 min yielding a detection limit of 1.3 nM Tre6P.

Extracted-ion chromatogram obtained during high-pressure hydrophillic-interaction liquid chromatography-mass spectrometry of a trehalose-grown Arabidopsis thaliana (photopgraph) seedling. Trehalose-6-phosphate (structural formula) is separated from its isomers sucrose-6-phosphate and lactose-1-phosphate

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109

    Article  Google Scholar 

  2. Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  CAS  Google Scholar 

  3. Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6849–6854

    Article  CAS  Google Scholar 

  4. Delatte TL, Schluepmann H, Smeekens SCM, de Jong GJ, Somsen GW (2011) Capillary electrophoresis-mass spectrometry analysis of trehalose-6-phosphate in Arabidopsis thaliana seedlings. Anal Bioanal Chem 400:1137–1144

    Article  CAS  Google Scholar 

  5. Schluepmann H, Berke L, Sanchez-Perez GF (2011) Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Bot. doi:10.1093/jxb/err311

  6. Zhang YH, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149:1860–1871

    Article  CAS  Google Scholar 

  7. Paul MJ, Jhurreea D, Zhang Y, Primavesi LF, Delatte T, Schluepmann H, Wingler A (2010) Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate. Plant Signal Behav 5:386–392

    Article  CAS  Google Scholar 

  8. Martinez-Barajas E, Delatte T, Schluepmann H, de Jong GJ, Somsen GW, Nunes C, Primavesi LF, Coello P, Mitchell RA, Paul MJ (2011) Wheat grain development is characterized by remarkable trehalose 6-phosphate accumulation pregrain filling: tissue distribution and relationship to snf1-related protein kinase1 activity. Plant Physiol 156:373–381

    Article  CAS  Google Scholar 

  9. Chen SA, Hajirezaei M, Peisker M, Tschiersch H, Sonnewald U, Bornke F (2005) Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynthesis, alters carbohydrate partitioning, and reduces growth. Planta 221:479–492

    Article  CAS  Google Scholar 

  10. Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T, Sucaet Y, Barkan L, Wohlgemuth G, Roth MR, Wurtele ES, Dixon P, Fiehn O, Lange BM, Shulaev V, Sumner LW, Welti R, Nikolau BJ, Rhee SY, Dickerson JA (2010) Plantmetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152:1807–1816

    Article  CAS  Google Scholar 

  11. Tropis M, Meniche X, Wolf A, Gebhardt H, Strelkov S, Chami M, Schomburg D, Kramer R, Morbach S, Daffe M (2005) The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in corynebacterineae. J Biol Chem 280:26573–26585

    Article  CAS  Google Scholar 

  12. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Prot 1:387–396

    Article  CAS  Google Scholar 

  13. El Rassi Z (1999) Recent developments in capillary electrophoresis and capillary electrochromatography of carbohydrate species. Electrophoresis 20:3134–3144

    Article  CAS  Google Scholar 

  14. Rovio S, Simolin H, Koljonen K, Siren H (2008) Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. J Chromatogr A 1185:139–144

    Article  CAS  Google Scholar 

  15. Murray DB, Hayashida Y, Nishimura K (1997) Trehalose analysis using ion exchange HPLC coupled with electrochemical detection. Biotechnol Tech 11:269–270

    Article  CAS  Google Scholar 

  16. Delatte TL, Selman MHJ, Schluepmann H, Somsen GW, Smeekens SCM, de Jong GJ (2009) Determination of trehalose-6-phosphate in Arabidopsis seedlings by successive extractions followed by anion exchange chromatography-mass spectrometry. Anal Biochem 389:12–17

    Article  CAS  Google Scholar 

  17. El-Bashiti T, Hamamci H, Oktem HA, Yucel M (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54

    Article  CAS  Google Scholar 

  18. Guignard C, Jouve L, Bogeat-Triboulot MB, Dreyer E, Hausman JF, Hoffmann L (2005) Analysis of carbohydrates in plants chromatography coupled with by high-performance anion-exchange electrospray mass spectrometry. J Chromatogr A 1085:137–142

    Article  CAS  Google Scholar 

  19. Antonio C, Larson T, Gilday A, Graham I, Bergstrom E, Thomas-Oates J (2008) Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue. Rapid Commun Mass Spectrom 22:1399–1407

    Article  CAS  Google Scholar 

  20. Ikegami T, Horie K, Saad N, Hosoya K, Fiehn O, Tanaka N (2008) Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal Bioanal Chem 391:2533–2542

    Article  CAS  Google Scholar 

  21. Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N (2008) Separation efficiencies in hydrophilic interaction chromatography. J Chromatogr A 1184:474–503

    Article  CAS  Google Scholar 

  22. Karlsson G, Hinz AC, Winge S (2004) Determination of the stabilizer sucrose in a plasma-derived antithrombin process solution by hydrophilic interaction chromatography with evaporative light-scattering detection. J Chromatogr Sci 42:361–365

    CAS  Google Scholar 

  23. Alpert AJ, Shukla M, Shukla AK, Zieske LR, Yuen SW, Ferguson MAJ, Mehlert A, Pauly M, Orlando R (1994) Hydrophilic-interaction chromatography of complex carbohydrates. J Chromatogr A 676:191–202

    Article  CAS  Google Scholar 

  24. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307

    Article  CAS  Google Scholar 

  25. Chauve B, Guillarme D, Cleon P, Veuthey JL (2010) Evaluation of various HILIC materials for the fast separation of polar compounds. J Sep Sci 33:752–764

    Article  CAS  Google Scholar 

  26. Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31:1465–1480

    Article  CAS  Google Scholar 

  27. Naidong W (2003) Bioanalytical liquid chromatography tandem mass spectrometry methods on underivatized silica columns with aqueous/organic mobile phases. J Chromatogr B 796:209–224

    Article  CAS  Google Scholar 

  28. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acids and other polar compounds. J Chromatogr A 499:177–196

    Article  CAS  Google Scholar 

  29. Hemstrom P, Irgum K (2006) Hydrophilic interaction chromatography. J Sep Sci 29:1784–1821

    Article  Google Scholar 

  30. Grumbach ES, Diehl DM, Neue UD (2008) The application of novel 1.7 mu m ethylene bridged hybrid particles for hydrophilic interaction chromatography. J Sep Sci 31:1511–1518

    Article  CAS  Google Scholar 

  31. Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis—(IUPAC technical report). Pure Appl Chem 74:835–855

    Article  CAS  Google Scholar 

  32. Espinosa S, Bosch E, Roses M (2000) Retention of ionizable compounds on HPLC. 5. pH scales and the retention of acids and bases with acetonitrile-water mobile phases. Anal Chem 72:5193–5200

    Article  CAS  Google Scholar 

  33. Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation RID D-6283-2011 RID B-6683-2011. Plant Physiol 135:879–890

    Article  CAS  Google Scholar 

  34. Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H (2011) Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the snrk1 signaling pathway. Plant Physiol 157:160–174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sastre Toraño.

Additional information

Javier Sastre Toraño and Thierry L. Delatte contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastre Toraño, J., Delatte, T.L., Schluepmann, H. et al. Determination of trehalose-6-phosphate in Arabidopsis thaliana seedlings by hydrophilic-interaction liquid chromatography–mass spectrometry. Anal Bioanal Chem 403, 1353–1360 (2012). https://doi.org/10.1007/s00216-012-5928-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5928-4

Keywords

Navigation