Skip to main content
Log in

Addition of humic acid accelerates the growth of Euglena pisciformis AEW501 and the accumulation of lipids

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

As an excellent cell factory rich in polyunsaturated fatty acids, β-1,3-glucan, amino acids, and vitamins, Euglena has gained great attention with high-value products in recent years. In order to determine the optimal cultivation method of Euglena pisciformis AEW501, the effects of phototrophic, mixotrophic, and heterotrophic mode on its growth were investigated, and humic acid (HA) as a growth stimulant was added into the mixotrophic culture system to verify the hypothesis that HA addition could accelerate the growth and lipid accumulation of E. pisciformis AEW501. The results indicated that biomass of mixotrophic mode (330 ± 0.05 mg L−1) was 4.80 times and 7.65 times higher than that of phototrophic and heterotrophic mode, respectively, and mixotrophy was proved as the optimal trophic mode. Moreover. The maximum biomass productivity (34.63 mg L−1 day−1) and the highest lipid content (59.51%) were achieved in 50 mg L−1 HA treatment though there was no significant difference between 10 mg L−1 and 50 mg L−1 treatments. While photosynthetic efficiency of photosystem II, pigments content, cell size, and yield of eicosapentaenoic (EPA) and docosahexaenoic (DHA) in 10 mg L−1 HA treatment were the highest. It could be concluded that HA showed good promotion effects on growth and high-value products accumulation of E. pisciformis AEW501. This research will be helpful for the large-scale cultivation of E. pisciformis AEW501.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The main data are shown in the manuscript. If readers want to obtain other raw data, they can request this from the corresponding authors.

References

  • Atiyeh RM, Lee S, Edwards CA, Arancon NQ, Metzger JD (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14

    Article  CAS  PubMed  Google Scholar 

  • Byun MY, Kim D, Youn UJ, Lee S, Lee H (2021) Improvement of moss photosynthesis by humic acids from Antarctic tundra soil. Plant Physiol Biochem 159:37–42

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro FC, Santa-Catarina C, Silveira V, de Souza SR (2011) Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Biosci Biotechnol Biochem 75:70–74

    Article  CAS  PubMed  Google Scholar 

  • Damiani MC, Popovich CA, Constenla D, Leonardi PI (2010) Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol 101:3801–3807

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG (1992) Molecular ecology of phytoplankton photosynthesis. In: Falkowski PG, Woodhead AD, Vivirito K (Eds) Primary Productivity and Biogeochemical Cycles in the Sea. Springer, Boston pp 47–67

  • Feng P, Deng Z, Hu Z, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584

    Article  CAS  PubMed  Google Scholar 

  • Franz AK, Danielewicz MA, Wong DM, Anderson LA, Boothe JR (2013) Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem Biol 8:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Gim GH, Kim SW (2019) Growth factors in oceanic sediment significantly stimulate the biomass and lipid production of two oleaginous microalgae. J Appl Phycol 31:49–59

    Article  CAS  Google Scholar 

  • Gissibl A, Sun A, Care A, Nevalainen H, Sunna A (2019) Bioproducts from Euglena gracilis: synthesis and applications. Front Bioeng Biotechnol 7:108

    Article  Google Scholar 

  • Hasan MT, Sun A, Mirzaei M, Te’o J, Hobba G, Sunna A, Nevalainen H (2017) A comprehensive assessment of the biosynthetic pathways of ascorbate, α-tocopherol and free amino acids in Euglena gracilis var. saccharophila. Algal Res 27:140–151

    Article  Google Scholar 

  • He Q, Yang H, Hu C (2015) Optimizing light regimes on growth and lipid accumulation in Ankistrodesmus fusiformis H1 for biodiesel production. Bioresour Technol 198:876–883

    Article  CAS  PubMed  Google Scholar 

  • Jeon MS, Oh JJ, Kim JY, Han SI, Sim SJ, Choi YE (2019) Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485. Bioresour Technol 288:121513

    Article  CAS  PubMed  Google Scholar 

  • Jeong UC, Choi J-K, Kang C-M, Choi B-D, Kang S-J (2016) Effects of culture methods on the growth rates and fatty acid profiles of Euglena gracilis. Korean J Fish Aquatic Sci 49:38–44

    CAS  Google Scholar 

  • Jin H, Zhang H, Zhou Z, Li K, Hou G, Xu Q, Chuai W, Zhang C, Han D, Hu Q (2020) Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnol Bioeng 117:96–108

  • Kasai F, Kawachi M, Erata M, Watanabe MM (1997) NIES-Collection List of Strains, 5th edn. National Institute for Environmental Studies, Tsukuba

    Google Scholar 

  • Khatiwada B, Sunna A, Nevalainen H (2020) Molecular tools and applications of Euglena gracilis: From biorefineries to bioremediation. Biotechnol Bioeng 117:3952–3967

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Oh JJ, Jeon MS, Kim GH, Choi YE (2019) Improvement of Euglena gracilis paramylon production through a cocultivation strategy with the indole-3-acetic acid-producing bacterium Vibrio natriegens. Appl Environ Microbiol 85:e01548-e1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Oh JJ, Kim DH, Kim HS, Lee C, Park J, Choi YE (2021) Application of electrical treatment on Euglena gracilis for increasing paramylon production. Appl Microbiol Biotechnol 105:1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Kings AJ, Raj RE, Miriam LRM, Visvanathan MA (2017) Growth studies on microalgae Euglena sanguinea in various natural eco-friendly composite media to optimize the lipid productivity. Bioresour Technol 244:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka S (1977) Studies on culture conditions for the determination of the nutritive value of Euglena gracilis protein and the general and amino acid compositions of the cells. J Agric Chem Soc Jpn 51:477–482

    CAS  Google Scholar 

  • Kottuparambil S, Thankamony RL, Agusti S (2019) Euglena as a potential natural source of value-added metabolites. Algal Res 37:154–159

    Article  Google Scholar 

  • Kumar BR, Mathimani T, Sudhakar MP, Rajendran K, Nizami A-S, Brindhadevi K (2021) A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renew Sust Energ Rev 138:110649

    Article  CAS  Google Scholar 

  • Lamers PP, Janssen M, De Vos RC, Bino RJ, Wijffels RH (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26:631–638

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hu HY, Zhang YP (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102:3098–3102

    Article  CAS  PubMed  Google Scholar 

  • Li M, Munoz HE, Goda K, Di Carlo D (2017) Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Sci Rep 7:10802

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieke T, Steinberg CEW, Pan B, Perminova IV, Meinelt T (2021) Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture. Sci Rep 11:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millan-Oropeza A, Fernandez-Linares L (2017) Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions. Environ Sci Pollut Res Int 24:25618–25626

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa M, Andoh H, Koyama K, Watanabe Y, Nakai T, Ueda M (2015) Alteration of wax ester content and composition in Euglena gracilis with gene silencing of 3-ketoacyl-CoA thiolase isozymes. Lipids 50:483–492

    Article  CAS  PubMed  Google Scholar 

  • Noble A, Kisiala A, Galer A, Clysdale D, Emery RJN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49:244–254

    Article  CAS  Google Scholar 

  • Ogawa T, Tamoi M, Kimura A, Mine A, Sakuyama H, Yoshida E (2015) Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production. Biotechnol Biofuels 8:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo N, Yagi O, Okada M (1998) Effects of humic and fulvic acids on the growth of Microcystis aeruginosa. Environ Technol 19:611–617

    Article  CAS  Google Scholar 

  • Othibeng K, Nephali L, Ramabulana AT, Steenkamp P, Petras D, Kang KB, Opperman H, Huyser J, Tugizimana F (2021) A metabolic choreography of maize plants treated with a humic substance-based biostimulant under normal and starved conditions. Metabolites 11:403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang Y, Chen S, Zhao L, Song Y, Lei A, He J, Wang J (2021) Global metabolomics reveals that Vibrio natriegens enhances the growth and paramylon synthesis of Euglena gracilis. Front Bioeng Biotechnol 9:652021

    Article  PubMed  PubMed Central  Google Scholar 

  • Paliwal C, Jutur PP (2021) Dynamic allocation of carbon flux triggered by task-specific chemicals is an effective non-gene disruptive strategy for sustainable and cost-effective algal biorefineries. Chem Eng J 418:129413

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  PubMed  Google Scholar 

  • Pors Y, Steinberg CE (2012) Humic substances delay aging of the photosynthetic apparatus of Chara hispida. J Phycol 48:1522–1529

    Article  PubMed  Google Scholar 

  • Prakash A, Rashid MA (1968) Influence of humic substances on the growth of marine phytoplankton: dinoflagellates. Limnol Oceanog 13:598–606

    Article  CAS  Google Scholar 

  • Raman V, Ravi S (2010) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33:1043–1049

    Article  Google Scholar 

  • Rodriguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernandez G, Moreno-Sanchez R (2010) Increased synthesis of alpha-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172

    Article  CAS  PubMed  Google Scholar 

  • Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energy Rev 35:265–278

    Article  Google Scholar 

  • Shah MM, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Front Plant Sci 7:531

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah ZH, Rehman HM, Akhtar T, Alsamadany H, Hamooh BT, Mujtaba T, Daur I, Al Zahrani Y, Alzahrani HAS, Ali S, Yang SH, Chung G (2018) Humic substances: determining potential molecular regulatory processes in plants. Front Plant Sci 9:263

    Article  PubMed  PubMed Central  Google Scholar 

  • Soni RA, Sudhakar K, Rana RS (2017) Spirulina – from growth to nutritional product: a review. Trends Food Sci Technol 69:157–171

    Article  CAS  Google Scholar 

  • Starr RC, Zeikus JA (1993) UTEX - The culture collection of algae at the University of Texas at Austin. J Phycol 29(S2):1–93

    Article  Google Scholar 

  • Sun A, Hasan MT, Hobba G, Nevalainen H, Te’o J (2018) Comparative assessment of the Euglena gracilis var. saccharophila variant strain as a producer of the ß-1,3-glucan paramylon under varying light conditions. J Phycol 54:529–538

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T (2017) Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett 591:1360–1370

    Article  CAS  PubMed  Google Scholar 

  • Tavares OCH, Santos LA, Ferreira LM, Sperandio MVL, da Rocha JG, García AC, Dobbss LB, Berbara RLL, de Souza SR, Fernandes MS (2017) Humic acid differentially improves nitrate kinetics under low- and high-affinity systems and alters the expression of plasma membrane H+-ATPases and nitrate transporters in rice. Ann Appl Biol 170:89–103

    Article  CAS  Google Scholar 

  • Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y, Ishikawa T (2017) Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis. Sci Rep 7:13504

    Article  PubMed  PubMed Central  Google Scholar 

  • Tossavainen M, Ilyass U, Ollilainen V, Valkonen K, Ojala A, Romantschuk M (2019) Influence of long term nitrogen limitation on lipid, protein and pigment production of Euglena gracilis in photoheterotrophic cultures. PeerJ 7:e6624

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol 91:835–844

    CAS  Google Scholar 

  • Wang Y, Rischer H, Eriksen NT, Wiebe MG (2013) Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresour Technol 144:608–614

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Seppanen-Laakso T, Rischer H, Wiebe MG (2018) Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS One 13:e0195329

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Wolken J (1967) Euglena an experimental organism for biochemical and biophysical studies, 2nd edn. Meredith Publishing Company, New York

    Google Scholar 

  • Xia L, Rong J, Yang H, He Q, Zhang D, Hu C (2014) NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans. Bioresour Technol 161:402–409

    Article  CAS  PubMed  Google Scholar 

  • Yadavalli R, Rao CS, Rao RS, Potumarthi R (2014) Dairy effluent treatment and lipids production by Chlorella pyrenoidosa and Euglena gracilis: study on open and closed systems. ASIA-PAC J CHEM ENG 9:368–373

    Article  CAS  Google Scholar 

  • Yamada K, Suzuki H, Takeuchi T, Kazama Y, Mitra S, Abe T, Goda K, Suzuki K, Iwata O (2016) Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci Rep 6:26327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamane Y-i (2001) Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnol Lett 23:1223–1228

    Article  CAS  Google Scholar 

  • Yamin G, Falk R, Avtalion RR, Shoshana N, Ofek T, Smirnov R, Rubenstein G, van Rijn J (2017) The protective effect of humic-rich substances on atypical Aeromonas salmonicida subsp. salmonicida infection in common carp (Cyprinus carpio L.). J Fish Dis 40:1783–1790

    Article  CAS  PubMed  Google Scholar 

  • Zeng M, Hao W, Zou Y, Shi M, Jiang Y, Xiao P, Lei A, Hu Z, Zhang W, Zhao L, Wang J (2016) Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement “Euglena.” BMC Biotechnol 16:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Lai J, Gao M, Ashraf M (2013) Exogenous glycinebetaine and humic acid improve growth, nitrogen status, photosynthesis, and antioxidant defense system and confer tolerance to nitrogen stress in maize seedlings. J Plant Interact 9:159–166

    Article  CAS  Google Scholar 

  • Zhu J, Hong DD, Wakisaka M (2019) Phytic acid extracted from rice bran as a growth promoter for Euglena gracilis. Open Chem 17:57–63

    Article  CAS  Google Scholar 

  • Zhu J, Tan X, Hafid HS, Wakisaka M (2021) Enhancement of biomass yield and lipid accumulation of freshwater microalga Euglena gracilis by phenolic compounds from basic structures of lignin. Bioresour Technol 321:124441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31971477). The authors thank the Analysis and Testing Center, institute of hydrobiology for the help in the measurement of EPA and DHA.

Funding

This work was supported by the National Natural Science Foundation of China (No:31971477).

Author information

Authors and Affiliations

Authors

Contributions

PF and YB conceived and designed the study. PF, PX, YZ, and YZ performed the experiments. PF performed experimental data processing, analysis, and writing of the manuscript. XT, GS, and YB reviewed and edited the manuscript.

Corresponding author

Correspondence to Yonghong Bi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, P., Xu, P., Zhu, Y. et al. Addition of humic acid accelerates the growth of Euglena pisciformis AEW501 and the accumulation of lipids. J Appl Phycol 34, 51–63 (2022). https://doi.org/10.1007/s10811-021-02623-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02623-9

Keywords

Navigation