Skip to main content

Advertisement

Log in

Shallow Structure Fault and Fracture Mapping in Jaboi Volcano, Indonesia, Using VLF–EM and Electrical Resistivity Methods

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The area surrounding Jaboi volcano, Indonesia, has been planned for geothermal energy development with capacity of ~ 50 Mwe. Geophysical surveys can contribute to the understanding of the hydrogeology of the area because they can provide information without interferences, which could potentially react to the flow of hot water. In many cases, the occurrence of a hot spring is closely related to its local fault system, which permits the flow of thermal fluid to its surface. This research applied the very low-frequency electromagnetic (VLF–EM) method and then compared it with electrical resistivity data to map fractures, faults, and geological aspects in the Jaboi volcano manifestation area. In tropical areas such as Indonesia, the VLF–EM method has been applied widely in studying subsurface structures. However, it is rarely used in volcanic areas with high terrain conditions even though the mobility of VLF methods is simpler than the electrical resistivity method. At the west side of the volcano, the 2D models from both VLF–EM and electrical resistivity showed the conductive zone (log 0.5–1.5 Ωm) found as a response to the manifestation, which has a similar direction with a local fault known as the Ceuneuhot fault. At the east side, the 2D models from both methods showed a similar conductive zone at depths of 15–25 m, which is caused by the existence of bedrock (> log 2.5 Ωm). The bedrock at depths of 0–10 m inhibits the rise of fluid to the surface so that there is no geothermal manifestation in the other local fault known as the Leumomate fault. In addition, the 2D models from the two methods showed the contrast of some fracture zones as entry and exit points of fluid in the Jaboi volcano. In addition, analysis of Landsat 8 optical images also showed high-temperature values and low vegetation indices in several active craters as indicators of volcanic activity. Based on the processed data, it is concluded that VLF–EM can be used as a fast and accurate method to provide information about near-surface structures in a geothermal field, and it can be used safely to suggest a location for drilling programs or to give contributions to protect geothermal springs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8.

Similar content being viewed by others

References

  • Al-Tarazi, E., Abu Rajab, J., Al-Naqa, A., & El-Waheidi, M. (2008). Detecting leachate plumes and groundwater pollution at Ruseifa municipal landfill utilizing VLF-EM method. Journal of Applied Geophysics, 65(3–4), 121–131. https://doi.org/10.1016/j.jappgeo.2008.06.005

    Article  Google Scholar 

  • Baranwal, V. C., & Sharma, S. P. (2006). Integrated Geophysical Studies in the East-Indian Geothermal Province. Pure and Applied Geophysics, 163(1), 209–227. https://doi.org/10.1007/s00024-005-0001-2

    Article  Google Scholar 

  • Beamish, D. (2000). Quantitative 2D VLF data interpretation. Journal of Applied Geophysics, 45(1), 33–47. https://doi.org/10.1016/S0926-9851(00)00017-3

    Article  Google Scholar 

  • Bennett, J. D., Bridge, N. R., Djunuddin, A., Ghazali, S. A., Jeffery, D. H., Keats, W., et al. (1981). The Geology of the Aceh Quadrangle, Sumatra. Bandung: Geological Research and Development Centre.

    Google Scholar 

  • Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J., Calvert, T., & Burns, R. (2004). Three-dimensional mapping of a landslide using a multi-geophysical approach: The Quesnel Forks landslide. Landslides, 1(1), 29–40. https://doi.org/10.1007/s10346-003-0008-7

    Article  Google Scholar 

  • Bosch, F. P., & Müller, I. (2001). Continuous gradient VLF measurements: A new possibility for high resolution mapping of karst structures. First Break, 19(6), 343–350. https://doi.org/10.1046/j.1365-2397.2001.00173.x

    Article  Google Scholar 

  • Chabaane, A., Redhaounia, B., & Gabtni, H. (2017). Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). Journal of African Earth Sciences, 134, 292–298. https://doi.org/10.1016/j.jafrearsci.2017.07.003

    Article  Google Scholar 

  • Dirasutisna, S., & Hasan, A. R. (2005). Geologi Panas Bumi Jaboi, Sabang, Propinsi Aceh Nangroe Darussalam. Direktorat Inventarisasi Sumber Daya Mineral, Bandung.

  • Drahor, M. G., & Berge, M. A. (2006). Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey. Geothermics, 35(3), 302–320. https://doi.org/10.1016/j.geothermics.2006.04.001

    Article  Google Scholar 

  • Dwipa, S., Widodo, S., Suhanto, E., & Kusnadi, D. (2006). Integrated geological, geochemical and geophysical survey in Jaboi geothermal field, Nangro Aceh Darussalam, Indonesia. In: Proceedings of the 7th Asian Geothermal Symposium (pp. 121–126).

  • Fernández-Blanco, D., Philippon, M., & Von Hagke, C. (2016). Structure and kinematics of the Sumatran fault system in North Sumatra (Indonesia). Tectonophysics, 693, 453–464. https://doi.org/10.1016/j.tecto.2016.04.050

    Article  Google Scholar 

  • Fraser, D. C. (1969). Contouring of VLF-EM Data. Geophysics, 34(6), 958–967. https://doi.org/10.1190/1.1440065

    Article  Google Scholar 

  • Ghosal, D., Singh, S. C., Chauhan, A. P. S., & Hananto, N. D. (2012). New insights on the offshore extension of the Great Sumatran fault, NW Sumatra, from marine geophysical studies. Geochemistry Geophysics Geosystems, 13(11). https://doi.org/10.1029/2012GC004122

    Article  Google Scholar 

  • Grasmueck, M., Weger, R., & Horstmeyer, H. (2005). Full-resolution 3D GPR imaging. Geophysics, 70(1), K12–K19. https://doi.org/10.1190/1.1852780

    Article  Google Scholar 

  • Gürer, A., Bayrak, M., & Gürer, Ö. F. (2009). A VLF survey using current gathering phenomena for tracing buried faults of Fethiye-Burdur Fault Zone, Turkey. Journal of Applied Geophysics, 68(3), 437–447.

    Article  Google Scholar 

  • Hanano, M. (2004). Contribution of fractures to formation and production of geothermal resources. Renewable and Sustainable Energy Reviews, 8(3), 223–236. https://doi.org/10.1016/j.rser.2003.10.007

    Article  Google Scholar 

  • Hochstein, M. P., & Sudarman, S. (2008). History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics, 37(3), 220–266. https://doi.org/10.1016/j.geothermics.2008.01.001

    Article  Google Scholar 

  • Hodlur, G. K., Dhakate, R., & Andrade, R. (2006). Correlation of vertical electrical sounding and borehole-log data for delineation of saltwater and freshwater aquifers. Geophysics. Doi, 10(1190/1), 2169847.

    Google Scholar 

  • Husein, A., Prasetyo, H., Bahri, A. S., Santos, F. A. M., & Santosa, B. J. (2014). The VLF-EM imaging of potential collapse on the LUSI embankment. Journal of Applied Geophysics, 109, 218–232. https://doi.org/10.1016/j.jappgeo.2014.08.004

    Article  Google Scholar 

  • Ismail, N., Yanis, M., Idris, S., Abdullah, F., & Hanafiah, B. (2017). Near-Surface Fault Structures of the Seulimuem Segment Based on Electrical Resistivity Model. Journal of Physics: Conference Series, 846, 12016.

    Google Scholar 

  • Ito, T., Gunawan, E., Kimata, F., Tabei, T., Simons, M., Meilano, I., et al. (2012). Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault. Journal of Geophysical Research Solid Earth. https://doi.org/10.1029/2011JB008940

    Article  Google Scholar 

  • Jeng, Y., Lin, M.-J., Chen, C.-S., & Wang, Y.-H. (2007). Noise reduction and data recovery for a VLF-EM survey using a nonlinear decomposition method. Geophysics, 72(5), F223–F235. https://doi.org/10.1190/1.2752561

    Article  Google Scholar 

  • Karcıoğlu, G. (2019). Near-surface resistivity structure near avcilar landslide in İstanbul, Turkey by 2D inversion of VLF data. Journal of Applied Geophysics, 163, 73–83. https://doi.org/10.1016/j.jappgeo.2019.02.012

    Article  Google Scholar 

  • Karous, M., & Hjelt, S. E. (1983). Linear Filtering of VLF Dip-Angle Measurements. Geophysical Prospecting, 31(5), 782–794. https://doi.org/10.1111/j.1365-2478.1983.tb01085.x

    Article  Google Scholar 

  • Khalil, M. A., Santos, F. A. M., Moustafa, S. M., & Saad, U. M. (2009). Mapping water seepage from Lake Nasser, Egypt, using the VLF-EM method: A case study. Journal of Geophysics and Engineering, 6(2), 101–110. https://doi.org/10.1088/1742-2132/6/2/001

    Article  Google Scholar 

  • Loke, M. H., & Lane, J. W., Jr. (2004). Inversion of Data from Electrical Resistivity Imaging Surveys in Water-Covered Areas. Exploration Geophysics, 35(4), 266–271. https://doi.org/10.1071/EG04266

    Article  Google Scholar 

  • Mansoer, W. R., & Idral, A. (2015). Geothermal Resources Development in Indonesia: A History. World Geothermal Congress 2015.

  • Marwan, Yanis, M., Muzakir, & Nugraha, G. S. (2020). Application of QR codes as a new communication technology and interactive tourist guide in Jaboi, Sabang. In: IOP Conference Series: Materials Science and Engineering (Vol. 796). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/796/1/012025

  • Marwan, A., Yanis, M., & Furumoto, Y. (2019a). Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis. International Journal of Geomate, 17(63), 210–216. https://doi.org/10.21660/2019.63.77489

    Article  Google Scholar 

  • Marwan, I. R., Yanis, M., Idroes, G. M., & Syahriza, A. (2021). A Low-Cost UAV Based Application For Identify and Mapping a Geothermal Feature in Ie Jue Manifestation, Seulawah Volcano Indonesia. International Journal of Geomate, 20(80), 135–142. https://doi.org/10.21660/2021.80.j2044

    Article  Google Scholar 

  • Marwan, M., Yanis, M., Idroes R, & Ismail, N. (2019b). 2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia. International Journal of Geomate, 17(62), 173–180. https://doi.org/10.21660/2019.62.1172

    Article  Google Scholar 

  • Marwan, M., Yanis, M., Nugraha, G. S., Zainal, M., Arahman, N., Idroes, R., et al. (2021). Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure. Energies, 14(19), 6091. https://doi.org/10.3390/en14196091

    Article  Google Scholar 

  • McNeill, D. J. (1991). RELACON. A VLF magnetic field “Relative Conductivity” Filter. Geonics Limited.

  • McNeill, J. D., & Labson, V. F. (1991). 7. Geological Mapping Using VLF Radio Fields. In: Electromagnetic Methods in Applied Geophysics (pp. 521–640). Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802686.ch7

  • Mia, M. B., Bromley, C. J., & Fujimitsu, Y. (2013). Monitoring Heat Losses Using Landsat ETM + Thermal Infrared Data: A Case Study in Unzen Geothermal Field, Kyushu Japan. Pure and Applied Geophysics, 170(12), 2263–2271. https://doi.org/10.1007/s00024-013-0662-1

    Article  Google Scholar 

  • Mia, M. B., Nishijima, J., & Fujimitsu, Y. (2014). Exploration and monitoring geothermal activity using Landsat ETM+images. Journal of Volcanology and Geothermal Research, 275, 14–21.

    Article  Google Scholar 

  • Mostafa, M., Anwar, M. B., & Radwan, A. (2018). Application of electrical resistivity measurement as quality control test for calcareous soil. HBRC Journal, 14(3), 379–384.

    Article  Google Scholar 

  • Muhammad, Y., Faisal, A., Yenny, A., Muzakir, Z., Abubakar, M., & Nazli, I. (2020). Continuity of Great Sumatran Fault in the Marine Area Revealed By 3D Inversion of Gravity Data. Jurnal Teknologi, 83(1), 145–155. https://doi.org/10.11113/jurnalteknologi.v83.14824

    Article  Google Scholar 

  • Nasruddin, M. I., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H. B., & Mahlia, T. M. I. (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. Renewable and Sustainable Energy Reviews, 53, 733–740.

    Article  Google Scholar 

  • Nieto, I. M., Martín, A. F., Blázquez, C. S., Aguilera, D. G., García, P. C., Vasco, E. F., et al. (2019). Use of 3D electrical resistivity tomography to improve the design of low enthalpy geothermal systems. Geothermics, 79, 1–13. https://doi.org/10.1016/j.geothermics.2019.01.007

    Article  Google Scholar 

  • Nugraha, R. P., & O’Sullivan, J. (2019). A key process of natural state modeling: 3D Geological model of Jaboi Geothermal field, Nangro Aceh Darussalam, Indonesia. IOP Conference Series: Earth and Environmental Science, 254, 12024. https://doi.org/10.1088/1755-1315/254/1/012024

    Article  Google Scholar 

  • Othman, A., Sultan, M., Becker, R., Alsefry, S., Alharbi, T., Gebremichael, E., et al. (2018). Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation. Surveys in Geophysics, 39(3), 543–566.

    Article  Google Scholar 

  • Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65–82.

    Article  Google Scholar 

  • Phillips, W. J., & Richards, W. E. (1975). Study of the effectiveness of the VLF method for the location of narrow-mineralized fault zones. Geoexploration, 13(1–4), 215–226.

    Article  Google Scholar 

  • Purnomo, B. J., & Pichler, T. (2014). Geothermal systems on the island of Java, Indonesia. Journal of Volcanology and Geothermal Research, 285, 47–59.

    Article  Google Scholar 

  • Radhakrishna, M., Lasitha, S., & Mukhopadhyay, M. (2008). Seismicity, gravity anomalies and lithospheric structure of the Andaman arc. NE Indian Ocean. Tectonophysics, 460(1–4), 248–262.

    Article  Google Scholar 

  • Ramesh Babu, V., Ram, S., & Sundararajan, N. (2007). Modeling and inversion of magnetic and VLF-EM data with an application to basement fractures: A case study from Raigarh, India. Geophysics, 72(5), B133–B140.

    Article  Google Scholar 

  • Rizal, M., Ismail, N., & YanisSurbakti, M. M. S. (2019). The 2D resistivity modelling on north sumatran fault structure by using magnetotelluric data. IOP Conference Series: Earth and Environmental Science, 364(1), 12036.

    Article  Google Scholar 

  • Rybach, L. (2003). Geothermal energy: Sustainability and the environment. Geothermics, 32(4–6), 463–470.

    Article  Google Scholar 

  • Salinas Naval, V., Santos-Assunçao, S., & Pérez-Gracia, V. (2018). GPR Clutter Amplitude Processing to Detect Shallow Geological Targets. Remote Sensing, 10(2), 88.

    Article  Google Scholar 

  • Santos, F. A., Mateus, A., Figueiras, J., & Gonçalves, M. A. (2006). Mapping groundwater contamination around a landfill facility using the VLF-EM method—A case study. Journal of Applied Geophysics, 60(2), 115–125.

    Article  Google Scholar 

  • Sharma, S. P., & Baranwal, V. C. (2005). Delineation of groundwater-bearing fracture zones in a hard rock area integrating very low frequency electromagnetic and resistivity data. Journal of Applied Geophysics, 57(2), 155–166.

    Article  Google Scholar 

  • Siripunvaraporn, W., & Egbert, G. (2000). An efficient data-subspace inversion method for 2-D magnetotelluric data. Geophysics, 65(3), 791–803.

    Article  Google Scholar 

  • Siripunvaraporn, W., & Egbert, G. (2009). WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation. Physics of the Earth and Planetary Interiors, 173(3–4), 317–329.

    Article  Google Scholar 

  • Spies, B. R. (1989). Depth of investigation in electromagnetic sounding methods. Geophysics, 54(7), 872–888. https://doi.org/10.1190/1.1442716

    Article  Google Scholar 

  • Sundararajan, N., Ramesh Babu, V., Shiva Prasad, N., & Srinivas, Y. (2006). VLFPROS—A Matlab code for processing of VLF-EM data. Computers & Geosciences, 32(10), 1806–1813. https://doi.org/10.1016/j.cageo.2006.02.021

    Article  Google Scholar 

  • Sungkono, Y., Husein, A., Prasetyo, H., Charis, M., Irawan, D., et al. (2018). Assessment of Sidoarjo mud flow embankment stability using very low frequency electromagnetic method. Environmental Earth Sciences, 77(5), 196. https://doi.org/10.1007/s12665-018-7333-6

    Article  Google Scholar 

  • GEM Systems. (2015). Instruction manual release GSM-19 v7.0.

  • USGS. (2015). Landsat 8 (L8) Data Users Handbook. Earth Resources Observation and Science (EROS) Center.

  • Vargemezis, G. (2014). 3D geoelectrical model of geothermal spring mechanism derived from VLF measurements: A case study from Aggistro (Northern Greece). Geothermics, 51, 1–8. https://doi.org/10.1016/j.geothermics.2013.09.001

    Article  Google Scholar 

  • Wu, C., Hu, X., Wang, G., Xi, Y., Lin, W., Liu, S., et al. (2018). Magnetotelluric Imaging of the Zhangzhou Basin Geothermal Zone, Southeastern China. Energies, 11(8), 2170. https://doi.org/10.3390/en11082170

    Article  Google Scholar 

  • Yanis, M., Zainal, M., Marwan, M., & Ismail, N. (2019). Delineation of Buried Paleochannel Using EM Induction in Eastern Banda Aceh, Indonesia. In: 81st EAGE Conference and Exhibition 2019 (pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.201900705

  • Yanis, M., Novari, I., Zaini, N., Marwan, Pembonan, A. Y., & Nizamuddin. (2020). OLI and TIRS Sensor Platforms for Detection the Geothermal Prospecting in Peut Sagoe Volcano, Aceh Province, Indonesia. In: 2020 International Conference on Electrical Engineering and Informatics (ICELTICs) (Vol. 2020–Octob, pp. 1–6). IEEE. https://doi.org/10.1109/ICELTICs50595.2020.9315378

  • Yanis, M., Abdullah, F., Zaini, N., & Ismail, N. (2021a). The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly. Acta Geophysica, 69(3), 795–807. https://doi.org/10.1007/s11600-021-00567-9

    Article  Google Scholar 

  • Yanis, M., Marwan, M., Paembonan, A. Y., Yudhyantoro, Y., Rusydy, I., Idris, S., & Asrillah, A. (2021b). Geophysical and geotechnical approaches in developing subsurface model for gas power plant foundation. Indian Geotechnical Journal. https://doi.org/10.1007/s40098-021-00559-y

    Article  Google Scholar 

  • Zaini, N., Yanis, M., Marwan, Isa, M., & van der Meer, F. (2021). Assessing of land surface temperature at the Seulawah Agam volcano area using the landsat series imagery. In Journal of Physics: Conference Series, Vol. 1825. https://doi.org/10.1088/1742-6596/1825/1/012021

  • Zhang, L., Jiang, P., Wang, Z., & Xu, R. (2017). Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems. Applied Thermal Engineering, 115, 923–936. https://doi.org/10.1016/j.applthermaleng.2017.01.013

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Directorate of Higher Education, Ministry of Education and Culture, Indonesia, under Penelitian Dasar Unggulan Perguruan Tinggi research grant with contract number 44/UN11.2.1/PT.01.03/DRPM/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Yanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanis, M., Ismail, N. & Abdullah, F. Shallow Structure Fault and Fracture Mapping in Jaboi Volcano, Indonesia, Using VLF–EM and Electrical Resistivity Methods. Nat Resour Res 31, 335–352 (2022). https://doi.org/10.1007/s11053-021-09966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-021-09966-7

Keywords

Navigation