Skip to main content
Log in

Experimental Study of a Modified Command Governor Adaptive Controller for Depth Control of an Unmanned Underwater Vehicle

  • Research Article
  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

Command governor–based adaptive control (CGAC) is a recent control strategy that has been explored as a possible candidate for the challenging task of precise maneuvering of unmanned underwater vehicles (UUVs) with parameter variations. CGAC is derived from standard model reference adaptive control (MRAC) by adding a command governor that guarantees acceptable transient performance without compromising stability and a command filter that improves the robustness against noise and time delay. Although simulation and experimental studies have shown substantial overall performance improvements of CGAC over MRAC for UUVs, it has also shown that the command filter leads to a marked reduction in initial tracking performance of CGAC. As a solution, this paper proposes the replacement of the command filter by a weight filter to improve the initial tracking performance without compromising robustness and the addition of a closed-loop state predictor to further improve the overall tracking performance. The new modified CGAC (M-CGAC) has been experimentally validated and the results indicate that it successfully mitigates the initial tracking performance reduction, significantly improves the overall tracking performance, uses less control force, and increases the robustness to noise and time delay. Thus, M-CGAC is a viable adaptive control algorithm for current and future UUV applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charita D. Makavita.

Additional information

Article Highlights

• Modification of command governor adaptive control using a weight filter and a closed-loop state predictor was experimentally verified.

• The weight filter significantly reduces the effect of noise and adds the phase margin for increased stability without negatively affecting initial transient tracking.

• M-CGAC significantly improves tracking performances throughout the transient region and is highly suitable for precise underwater vehicle operations.

Appendix: Lyapunov stability proof of M-CGAC

Appendix: Lyapunov stability proof of M-CGAC

In order to derive the stable adaptive laws, consider the following Lyapunov function candidate

$$ {\displaystyle \begin{array}{l}V\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{un f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)={\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{P}{\boldsymbol{e}}_m+{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{P}}_{prd}\hat{\boldsymbol{e}}+\mathrm{trace}\left[\begin{array}{l}{\left({\overset{\sim }{\boldsymbol{W}}}_{un}{\Lambda}^{\frac{1}{2}}\right)}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un}^{-1}\left({\overset{\sim }{\boldsymbol{W}}}_{un}{\Lambda}^{\frac{1}{2}}\right)+\\ {}{\left({\overset{\sim }{\boldsymbol{W}}}_{\sigma }{\Lambda}^{\frac{1}{2}}\right)}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma}^{-1}\left({\overset{\sim }{\boldsymbol{W}}}_{\sigma }{\Lambda}^{\frac{1}{2}}\right)\end{array}\right]\\ {}\kern0.5em \\ {}\kern26.25em +\alpha \mathrm{trace}\left[\begin{array}{l}{\left({\overset{\sim }{\boldsymbol{W}}}_{un f}{\Lambda}^{\frac{1}{2}}\right)}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un f}^{-1}\left({\overset{\sim }{\boldsymbol{W}}}_{un f}{\Lambda}^{\frac{1}{2}}\right)+\\ {}{\left({\overset{\sim }{\boldsymbol{W}}}_{\sigma f}{\Lambda}^{\frac{1}{2}}\right)}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma_f}^{-1}\left({\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}{\Lambda}^{\frac{1}{2}}\right)\end{array}\right]\end{array}}\kern9em $$
(49)

where \( {\overset{\sim }{\boldsymbol{W}}}_{un}(t)\triangleq {\hat{\boldsymbol{W}}}_{un}(t)-{\boldsymbol{W}}_{un}\in {\mathbb{R}}^{q\times q} \) and \( {\overset{\sim }{\boldsymbol{W}}}_{\sigma }(t)\triangleq {\hat{\boldsymbol{W}}}_{\sigma }(t)-{\boldsymbol{W}}_{\sigma}\in {\mathbb{R}}^{s\times q} \) are weight estimation errors, \( {\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}(t)\triangleq {\hat{\boldsymbol{W}}}_{u{n}_f}(t)-{\boldsymbol{W}}_{un}\in {\mathbb{R}}^{q\times q} \)and \( {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}(t)\triangleq {\hat{\boldsymbol{W}}}_{\sigma }(t)-{\boldsymbol{W}}_{\sigma}\in {\mathbb{R}}^{s\times q} \)are low-pass-filtered weights estimation errors.

Note that V(0,  0,  0,  0, 0,  0) = 0 and \( V\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)>0 \) for all \( \left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)\ne \left(0,0,0,0,0,0\right) \). In addition, \( V\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right) \) is radially unbounded.

Now, differentiating Eq. (49) yields

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)={\dot{\boldsymbol{e}}}_m^{\mathrm{T}}\boldsymbol{P}{\boldsymbol{e}}_m+{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{P}{\dot{\boldsymbol{e}}}_m+{\dot{\hat{\boldsymbol{e}}}}^{\mathrm{T}}{\boldsymbol{P}}_{prd}\hat{\boldsymbol{e}}+{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{P}}_{prd}\dot{\hat{\boldsymbol{e}}}\\ {}+2\mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{un}+{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma}\right)\Lambda \right]+2\alpha \mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{u{n}_f}{\boldsymbol{\Gamma}}_{u{n}_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{u{n}_f}+{{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{\sigma_f}{\boldsymbol{\Gamma}}_{\sigma_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma_f}\right)\Lambda \right]\\ {}\kern5em \end{array}} $$
(50)

Substituting from error dynamics of Eqs. (11) and (31) in Eq. (50) yields

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)={\left({\boldsymbol{A}}_m{\boldsymbol{e}}_m-\boldsymbol{H}\boldsymbol{\Lambda } \left[{\overset{\sim }{\boldsymbol{W}}}_{un}^{\mathrm{T}}{\boldsymbol{u}}_n(t)+{\overset{\sim }{\boldsymbol{W}}}_{\sigma}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\right]\right)}^{\mathrm{T}}\boldsymbol{P}{\boldsymbol{e}}_m\\ {}+{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{P}\left({\boldsymbol{A}}_m{\boldsymbol{e}}_m-\boldsymbol{H}\boldsymbol{\Lambda } \left[{\overset{\sim }{\boldsymbol{W}}}_{un}^{\mathrm{T}}(t){\boldsymbol{u}}_n(t)+{\overset{\sim }{\boldsymbol{W}}}_{\sigma}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\right]\right)+{\left({\boldsymbol{A}}_m\hat{\boldsymbol{e}}+\boldsymbol{H}\boldsymbol{\Lambda } \left[{\overset{\sim }{\boldsymbol{W}}}_{un}^{\mathrm{T}}{\boldsymbol{u}}_n(t)+{\overset{\sim }{\boldsymbol{W}}}_{\sigma}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\right]\right)}^{\mathrm{T}}{\boldsymbol{P}}_{prd}\hat{\boldsymbol{e}}\ \\ {}\kern1.75em +{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{P}}_{prd}\left({\boldsymbol{A}}_m\hat{\boldsymbol{e}}+\boldsymbol{H}\boldsymbol{\Lambda } \left[{\overset{\sim }{\boldsymbol{W}}}_{un}^{\mathrm{T}}{\boldsymbol{u}}_n(t)+{\overset{\sim }{\boldsymbol{W}}}_{\sigma}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\right]\right)+2\mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{un}+{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma}\right)\Lambda \right]\kern0.5em \\ {}\kern1.75em +2\alpha \mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{u{n}_f}{\boldsymbol{\Gamma}}_{u{n}_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{u{n}_f}+{{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{\sigma_f}{\boldsymbol{\Gamma}}_{\sigma_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma_f}\right)\Lambda \right]\\ {}\end{array}} $$
(51)

Simplyfing Eq. (51) yields

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)={\boldsymbol{e}}_m^T\left[{\boldsymbol{A}}_m^T\boldsymbol{P}+\boldsymbol{P}{\boldsymbol{A}}_m\right]{\boldsymbol{e}}_m+{\hat{\boldsymbol{e}}}^{\mathrm{T}}\left[{\boldsymbol{A}}_{prd}^{\mathrm{T}}{\boldsymbol{P}}_{prd}+{\boldsymbol{A}}_{prd}{\boldsymbol{P}}_{prd}\right]\boldsymbol{e}\\ {}\kern1.75em -\mathbf{2}{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{PH}\boldsymbol{\Lambda } \left[{\overset{\sim }{\boldsymbol{W}}}_{un}^{\mathrm{T}}{\boldsymbol{u}}_n(t)+{\overset{\sim }{\boldsymbol{W}}}_{\sigma}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\right]+\mathbf{2}{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{P}}_{prd}\boldsymbol{H}\boldsymbol{\Lambda } \left[{\overset{\sim }{\boldsymbol{W}}}_{un}^{\mathrm{T}}{\boldsymbol{u}}_n(t)+{\overset{\sim }{\boldsymbol{W}}}_{\sigma}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\right]\\ {}\kern2em +2\mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{un}+{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma}\right)\Lambda \right]+2\alpha \mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{u{n}_f}{\boldsymbol{\Gamma}}_{u{n}_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{u{n}_f}+{{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{\sigma_f}{\boldsymbol{\Gamma}}_{\sigma_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma_f}\right)\Lambda \right]\\ {}\kern3em \end{array}}\kern4.5em $$
(52)

Substituting in Eq. (52) from the Lyapunov equations \( \mathbf{0}={\boldsymbol{A}}_m^{\mathrm{T}}\boldsymbol{P}+\boldsymbol{P}{\boldsymbol{A}}_m+\boldsymbol{Q} \) for some Q = QT > 0 and\( \mathbf{0}={\boldsymbol{A}}_{prd}^{\mathrm{T}}{\boldsymbol{P}}_{prd}+{\boldsymbol{P}}_{prd}{\boldsymbol{A}}_{prd}+{\boldsymbol{Q}}_{prd} \) for some \( {\boldsymbol{Q}}_{prd}={\boldsymbol{Q}}_{prd}^{\mathrm{T}}>0 \) yields

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)=-{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{Q}{\boldsymbol{e}}_m-{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{Q}}_{prd}\boldsymbol{e}+\mathbf{2}\left({\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{P}}_{prd}-{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{P}\right)\boldsymbol{H}\boldsymbol{\Lambda } \left[{{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{u}}_n(t)+{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\right]\\ {}\kern8em +2\mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{un}+{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma}\right)\Lambda \right]+2\alpha \mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{u{n}_f}{\boldsymbol{\Gamma}}_{u{n}_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{u{n}_f}+{{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{\sigma_f}{\boldsymbol{\Gamma}}_{\sigma_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma_f}\right)\Lambda \right]\\ {}\kern4.75em \end{array}} $$
(53)

Defining \( \overline{\boldsymbol{e}}=\left({\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{P}}_{prd}-{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{P}\right)\boldsymbol{H} \) Eq. (53) simplify to

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)=-{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{Q}{\boldsymbol{e}}_m-{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{Q}}_{prd}\boldsymbol{e}-\mathbf{2}{\overline{\boldsymbol{e}}}^T\boldsymbol{\Lambda} {{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{u}}_n(t)-2{\overline{\boldsymbol{e}}}^{\mathrm{T}}\boldsymbol{\Lambda} {{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right)\\ {}\kern7.5em +2\mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{un}+{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma}\right)\Lambda \right]+2\alpha \mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{u{n}_f}{\boldsymbol{\Gamma}}_{u{n}_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{u{n}_f}+{{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{\sigma_f}{\boldsymbol{\Gamma}}_{\sigma_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma_f}\right)\Lambda \right]\\ {}\kern3em \end{array}} $$
(54)

Using the trace identity aTb = trace(baT) in Eq. (54) gives

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)=-{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{Q}{\boldsymbol{e}}_m-{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{Q}}_{prd}\boldsymbol{e}-2\mathrm{trace}\left[{{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{u}}_n(t){\overline{\boldsymbol{e}}}^{\mathrm{T}}\boldsymbol{\Lambda} \right]-2\mathrm{trace}\left[{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right){\overline{\boldsymbol{e}}}^{\mathrm{T}}\boldsymbol{\Lambda} \right]\\ {}+2\mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{un}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{un}+{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}{\boldsymbol{\Gamma}}_{\sigma}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma}\right)\Lambda \right]+2\alpha \mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{u{n}_f}{\boldsymbol{\Gamma}}_{u{n}_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{u{n}_f}+{{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{\sigma_f}{\boldsymbol{\Gamma}}_{\sigma_f}^{-1}{\dot{\hat{\boldsymbol{W}}}}_{\sigma_f}\right)\Lambda \right]\\ {}\kern3em \end{array}} $$
(55)

Substituting from the filtered weights Eq. (22) and proposed M-CGAC weight update laws given by (32) and (33) in Eq. (55) yields

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)=-{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{Q}{\boldsymbol{e}}_m-{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{Q}}_{prd}\boldsymbol{e}-2\mathrm{trace}\left[{{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}{\boldsymbol{u}}_n(t){\overline{\boldsymbol{e}}}^{\mathrm{T}}\boldsymbol{\Lambda} \right]-2\mathrm{trace}\left[{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}\boldsymbol{\sigma} \left(\boldsymbol{x}\right){\overline{\boldsymbol{e}}}^{\mathrm{T}}\boldsymbol{\Lambda} \right]+\\ {}2\mathrm{trace}\left[\left(\begin{array}{l}{{\overset{\sim }{\boldsymbol{W}}}_{un}}^{\mathrm{T}}\left({\boldsymbol{u}}_n(t){\overline{\boldsymbol{e}}}^{\mathrm{T}}-\alpha \left({\hat{\boldsymbol{W}}}_{un}-{\hat{\boldsymbol{W}}}_{u{n}_f}\right)\right)+\\ {}{{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}\left(\boldsymbol{\sigma} \left(\boldsymbol{x}(t)\right){\overline{\boldsymbol{e}}}^{\mathrm{T}}-\alpha \left({\hat{\boldsymbol{W}}}_{\sigma }-{\hat{\boldsymbol{W}}}_{\sigma_f}\right)\right)\end{array}\right)\Lambda \right]+2\alpha \mathrm{trace}\left[\left({{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{u{n}_f}\left({\hat{\boldsymbol{W}}}_{un}-{\hat{\boldsymbol{W}}}_{u{n}_f}\right)+{{\overset{\sim }{\boldsymbol{W}}}^{\mathrm{T}}}_{\sigma_f}\left({\hat{\boldsymbol{W}}}_{\sigma }-{\hat{\boldsymbol{W}}}_{\sigma f}\right)\right)\Lambda \right]\\ {}\kern0.75em \\ {}\end{array}} $$
(56)

Further simplifying Eq. (56)

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)=-{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{Q}{\boldsymbol{e}}_m-{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{Q}}_{prd}\boldsymbol{e}\\ {}\kern1em -2\alpha \mathrm{trace}\left[\left({\left({\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right)}^{\mathrm{T}}\left({\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right)\right)\Lambda \right]-2\alpha \mathrm{trace}\left[\left({\left({{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}-{{\overset{\sim }{\boldsymbol{W}}}^T}_{\sigma_f}\right)}^{\mathrm{T}}\left({\overset{\sim }{\boldsymbol{W}}}_{\sigma }-{\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)\right)\Lambda \right]\\ {}\kern1em \end{array}} $$
(57)

By definition

\( {\displaystyle \begin{array}{l}\mathrm{trace}\left[\left({\left({\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right)}^{\mathrm{T}}\left({\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right)\right)\Lambda \right]=\kern0.5em \sum \limits_{i=1}^N\sum \limits_{j=1}^M{\left({\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right)}_{ij}^2{\Lambda}_{ii}\ge {\left\Vert {\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right\Vert}_F^2{\Lambda}_{\mathrm{min}}\\ {}\kern0.5em \end{array}} \) \( \mathrm{where}\ {\left\Vert {\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right\Vert}_F^2=\sum \limits_{i=1}^N\sum \limits_{j=1}^M{\left({\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right)}_{ij}^2 \) is the Forbenius norm of \( \left({\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right) \) and Λmin is the minimum diagonal element of Λ. A similar definition is applicable to \( \mathrm{trace}\left[\left({\left({{\overset{\sim }{\boldsymbol{W}}}_{\sigma}}^{\mathrm{T}}-{{\overset{\sim }{\boldsymbol{W}}}^T}_{\sigma_f}\right)}^{\mathrm{T}}\left({\overset{\sim }{\boldsymbol{W}}}_{\sigma }-{\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)\right)\Lambda \right] \).

Thus, Eq. (57) reduces to

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)\le -{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{Q}{\boldsymbol{e}}_m-{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{Q}}_{prd}\boldsymbol{e}-2\alpha {\left\Vert {\overset{\sim }{\boldsymbol{W}}}_{un}-{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f}\right\Vert}_F^2{\Lambda}_{\mathrm{min}}-2\alpha {\left\Vert {\overset{\sim }{\boldsymbol{W}}}_{\sigma }-{\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right\Vert}_F^2{\Lambda}_{\mathrm{min}}\\ {}\kern11em \end{array}} $$
(58)

Therefore, as Λmin is positive and the Forbenius norm is positive

$$ {\displaystyle \begin{array}{l}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)\le -{\boldsymbol{e}}_m^{\mathrm{T}}\boldsymbol{Q}{\boldsymbol{e}}_m-{\hat{\boldsymbol{e}}}^{\mathrm{T}}{\boldsymbol{Q}}_{prd}\boldsymbol{e}\le 0\\ {}\kern11em \end{array}} $$

Hence, this proves that the closed-loop system is Lyapunov stable and that \( {\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em \) and \( {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f} \) are uniformly ultimately bounded. Since c(t)is bounded and Amis Hurwitz, then xm(t) and \( {\dot{\boldsymbol{x}}}_m(t) \) are bounded. Hence, the system state x(t) is bounded. This implies \( \hat{\boldsymbol{x}}(t) \), un(t), and σ(x) are bounded. Since the weight estimation errors \( {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma } \) are bounded and the ideal weights Wun, Wσ are constant, the weight estimations \( {\hat{\boldsymbol{W}}}_{un},{\hat{\boldsymbol{W}}}_{\sigma } \) are also bounded. Thus, it follows from Eqs. (11) and (31) that \( {\dot{\boldsymbol{e}}}_m,\kern0.5em \dot{\hat{\boldsymbol{e}}} \) are also bounded. Therefore, \( \ddot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right) \) is bounded. Now, it follows from Barbalat’s lemma (Ioannou and Fidan 2006) that \( \underset{t\to \infty }{\lim}\dot{V}\left({\boldsymbol{e}}_m,\kern0.5em \hat{\boldsymbol{e}},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{un},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma },{\overset{\sim }{\boldsymbol{W}}}_{u{n}_f},\kern0.5em {\overset{\sim }{\boldsymbol{W}}}_{\sigma_f}\right)=0 \), which consequently shows that em(t) and \( \hat{\boldsymbol{e}}(t) \) asymptotically converge to zero as t → ∞. Moreover, since the Lyapunov function V is radially unbounded, this convergence is global.

Thus, the system error and prediction error are globally, uniformly asymptotically stable, i.e., \( \underset{t\to \infty }{\lim}\left\Vert {\boldsymbol{e}}_m\right\Vert =0 \) and \( \underset{t\to \infty }{\lim}\left\Vert \hat{\boldsymbol{e}}\right\Vert =0 \). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makavita, C.D., Jayasinghe, S.G., Nguyen, H.D. et al. Experimental Study of a Modified Command Governor Adaptive Controller for Depth Control of an Unmanned Underwater Vehicle. J. Marine. Sci. Appl. 20, 504–523 (2021). https://doi.org/10.1007/s11804-021-00225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-021-00225-y

Keywords

Navigation