Skip to main content
Log in

Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant–Arbuscular Mycorrhizal Fungal Associations

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The dynamic interactions of plants and arbuscular mycorrhizal fungi (AMF) that facilitate the efficient uptake of minerals from soil and provide protection from various environmental stresses (biotic and abiotic) are now also attributed to a third component of the symbiosis. These are the less investigated mycorrhizae helper bacteria (MHB), which constitute a dense, active bacterial community, tightly associated with AMF, and involved in the development and functioning of AMF. Although AMF spores are known to host several bacteria in their spore walls and cytoplasm, their role in promoting the ecological fitness and establishment of AMF symbiosis by influencing spore germination, mycelial growth, root colonization, metabolic diversity, and biocontrol of soil borne diseases is now being deciphered. MHB also promote the functioning of arbuscular mycorrhizal symbiosis by triggering various plant growth factors, leading to better availability of nutrients in the soil and uptake by plants. In order to develop strategies to promote mycorrhization by AMF, and particularly to stimulate the ability to utilize phosphorus from the soil, there is a need to decipher crucial metabolic signalling pathways of MHB and elucidate their functional significance as mycorrhiza helper bacteria. MHB, also referred to as AMF bioenhancers, also improve agronomic efficiency and formulations using AMF along with enriched population of MHB are a promising option. This review covers the aspects related to the specificity and mechanisms of action of MHB, which positively impact the formation and functioning of AMF in mycorrhizal symbiosis, and the need to advocate MHB as AMF bioenhancers towards their inclusion in integrated nutrient management practices in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All the data is provided, including Supplementary Information.

Code Availability

Not applicable.

References

  1. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  2. Costa MD, Pereira OL, Kasuya MCM, Borges AC (2002) Ectomicorrizas: A Face Oculta das Florestas. Biotecno Ci Desenvol 29:38–46

    Google Scholar 

  3. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rigamonte TA, Pylro VS, Duarte GF (2010) The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae association. Braz J Microbiol 41:832–840

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  6. Schüßler A, Gehrig H, Schwarzott D, Walker C (2001) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15

    Article  Google Scholar 

  7. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev IV, Gryganskyi A (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel DS, May T, Ryberg M, Abarenkov K (2018) High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Diversity 90:135–159

    Article  Google Scholar 

  9. Varga S, Finozzi C, Vestberg M, Kytoviita MM (2015) Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza 25:335–343

    Article  CAS  PubMed  Google Scholar 

  10. Liu YJ, He JX, Shi GX, An LZ, Öpik M, Feng HY (2011) Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau. FEMS Microbiol Ecol 78:355–365

    Article  CAS  PubMed  Google Scholar 

  11. Al-Yahya’ei M, Oehl F, Vallino M, Lumini E, Redecker D, Wiemken A (2011) Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza 21:195–209

    Article  PubMed  Google Scholar 

  12. Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268–279

    Article  PubMed  Google Scholar 

  13. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  14. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1–13

    Article  Google Scholar 

  15. Bidondo LF, Colombo R, Bompadre J, Benavides M, Scorza V, Silvani V, Pe´rgola M, Godeas A (2016) Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity. Appl Soil Ecol 105:86–90

    Article  Google Scholar 

  16. Gupta SK, Chakraborty AP (2020) Mycorrhiza helper bacteria: future prospects. Int J Res Rev 7:387–391

    Google Scholar 

  17. Birhane E, Sterck F, Fetene M, Bongers F, Kuyper T (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234

    Article  PubMed  CAS  Google Scholar 

  19. Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients, in Physiological mechanisms and adaptation strategies in plants under changing environment, vol. 1. Eds. Ahmad P, Wani MR (New York, NY: Springer), 25–55

  20. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F (2008) Stress tolerance in plants via habitat-adapted symbiosis. Int Soc Microb Ecol 2:404–416

    Google Scholar 

  21. Salam EA, Alatar A, El-Sheikh MA (2017) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25:1772–1780

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M (2015) Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci Hort 196:91–108

    Article  Google Scholar 

  23. Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours’ considerations for achieving food security. J Ecol 105:921–929

    Article  CAS  Google Scholar 

  24. Zou YN, Srivastava AK, Wu QS (2016) Glomalin: a potential soil conditioner for perennial fruits. Int J Agric Biol 18:293–297

    Article  CAS  Google Scholar 

  25. Agnolucci M, Avio L, Palla M, Sbrana C, Turrini A, Giovannetti M (2020) Health-promoting properties of plant products: the role of mycorrhizal fungi and associated bacteria. Agronomy 10:1–20

    Article  CAS  Google Scholar 

  26. Huang R, Li Z, Mao C, Zhang H, Sun Z, Li H, Huang C, Feng Y, Shen X, Bucher M (2020) Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytol 225:1762–1776

    Article  CAS  PubMed  Google Scholar 

  27. Duponnois R, Garbaye J (1991) Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare root forest nurseries. Plant Soil 138:169–176

    Article  Google Scholar 

  28. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  CAS  PubMed  Google Scholar 

  29. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  30. Deveau A, Labbe L (2017) Mycorrhiza helper bacteria. In: Martin F (ed) Molecular Mycorrhizal Symbiosis. John Wiley & Sons Inc, Hoboken, pp 437–450

    Google Scholar 

  31. Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    Article  CAS  PubMed  Google Scholar 

  32. Hameeda B, Srijana M, Rupela OP, Reddy G (2007) Effect of bacteria isolated from composts and macrofauna on sorghum growth and mycorrhizal colonization. World J Microb Biotech 23(6):883–887

    Article  Google Scholar 

  33. Singh A, Kumar R, Singh D (2019) Mycorrhizal fungi as biocontrol agent for soil borne pathogens: a review. Int J Pharmacogn Phytochem Res SP1:281–284

    Google Scholar 

  34. Vósatka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245–251

    Article  Google Scholar 

  35. Pandit A, Adholeya A, Cahill D, Brau L, Kochar M (2020) Microbial biofilms in nature: unlocking their potential for agricultural applications. J Appl Microbiol 129:199–211

    Article  CAS  PubMed  Google Scholar 

  36. Bharadwaj DP, Lundquist P, Alstrom S (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    Article  CAS  Google Scholar 

  37. Bianciotto V, Bandi CD, Minerdi M, Sironi H, Tichy V, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  39. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  40. Battini F, Cristani C, Giovannetti M, Agnolucci M (2016) Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 183:68–79

    Article  CAS  PubMed  Google Scholar 

  41. Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci 9:10–13

    Article  Google Scholar 

  42. Cruz AF, Ishii T (2012) Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open 1:52–57

    Article  PubMed  Google Scholar 

  43. Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Agnolucci M, Battini F, Cristani C, Giovannetti M (2015) Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biol Fertil Soils 51:379–389

    Article  CAS  Google Scholar 

  45. Lecomte J, St-Arnaud M, Hijri M (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 317:43–51

    Article  CAS  PubMed  Google Scholar 

  46. Scheublin TR, Sanders IR, Keel C, Van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763

    Article  PubMed  Google Scholar 

  47. Anca IA, Lumini E, Ghignone S, Salvioli A, Bianciotto V, Bonfante P (2009) The ftsZ gene of the endocellular bacterium ‘Candidatus Glomeribacter gigasporarum’ is preferentially expressed during the symbiotic phases of its host mycorrhizal fungus. Mol Plant Microbe Interact 22:302–310

    Article  CAS  PubMed  Google Scholar 

  48. Jargeat P, Cosseau C, Ola’h B, Jauneau A, Bonfante P, Batut J, Becard G, (2004) Isolation, free-living capacities, and genome structure of “Candidatus Glomeribacter gigasporarum”, the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J Bacteriol 186:6876–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mayo K, Davis RE, Motta J (1986) Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78:426–431

    Article  Google Scholar 

  50. Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T (2008) Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J Appl Microbiol 104:1711–1717

    Article  CAS  PubMed  Google Scholar 

  52. Bharadwaj DP, Lundquist PO, Persson P, Alstrom S (2008) Evidence for specificity of cultivable bacteria associated with arbuscular mycorrhizal fungal spores. FEMS Microb Ecol 65:310–322

    Article  CAS  Google Scholar 

  53. Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12

    Google Scholar 

  54. Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131

    Article  Google Scholar 

  55. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  56. Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the Arbuscular Mycorrhizal fungus Gigaspora margarita possesses the vacB Gene, which is involved in host cell colonization by bacteria. Microb Ecol 39:137–144

    Article  CAS  PubMed  Google Scholar 

  57. Jayasinghearachchi HS, Seneviratne G (2005) Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biol Bioch 38:405–408

    Article  CAS  Google Scholar 

  58. Salvioli A, Chiapello M, Fontaine J, Hadj-Sahraoui AL, Grandmougin-Ferjani A, Lanfranco L, Bonfante P (2010) Endobacteria affect the metabolic profile of their host Gigaspora margarita, an arbuscular mycorrhizal fungus. Environ Microbiol 12:2083–2095

    CAS  PubMed  Google Scholar 

  59. Sundram S, Meon S, Seman IA, Othman R (2011) Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense. J Microbiol 49(4):551–557

    Article  PubMed  Google Scholar 

  60. Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathology 81:754–759

    Article  Google Scholar 

  61. Selvakumar G, Krishnamoorthy R, Kim K, Sa TM (2016) Genetic diversity and association characters of bacteria isolated from arbuscular mycorrhizal fungal spore walls. PLoS ONE 11:1–16

    Article  CAS  Google Scholar 

  62. Long L, Lin Q, Yao Q, Zhu H (2017) Population and function analysis of cultivable bacteria associated with spores of arbuscular mycorrhizal fungus Gigaspora margarita. 3 Biotech 7:1–6

    Article  Google Scholar 

  63. Frey-Klett P, Garbaye J (2005) Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal–bacterial interactions. New Phytol 168:4–8

    Article  CAS  PubMed  Google Scholar 

  64. Viveganandan G, Jauhri KS (2000) Growth and survival of phosphate-solubilizing bacteria in calcium alginate. Microbiol Res 155:205–207

    Article  CAS  PubMed  Google Scholar 

  65. Horii S, Ishii T (2006) Identification and function of Gigaspora margarita growth-promoting microorganisms. Symbiosis 41:135–141

    CAS  Google Scholar 

  66. Lioussanne L, Keough A, Jolicoeur M, St‐Arnaud M (2006) Diversity of Glomus mosseae spore associated bacteria and their antagonism over soilborne plant pathogens in vitro. Granada‐Spain: Intern Cong Mycorrhizae (ICOM 5):203

  67. Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Becard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell 9:1716–1729

    CAS  Google Scholar 

  69. Budi SW, Bakhtiar Y, May NL (2012) Bacteria associated with arbuscular mycorrhizal spores Gigaspora margarita and their potential for stimulating root mycorrhizal colonization and neem (Melia azedarach Linn) seedling growth. Microbiol Indones 6:180–188

    Article  Google Scholar 

  70. Long L, Zhu H, Yao Q, Ai Y (2008) Analysis of bacterial communities associated with spores of Gigaspora margarita and Gigaspora rosea. Plant Soil 310:1–9

    Article  CAS  Google Scholar 

  71. Vivas A, Marulanda A, Ruiz-Lozano JM, Barea JM, Azcón R (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256

    Article  PubMed  Google Scholar 

  72. Vivas A, Barea JM, Azcón R (2005) Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn Concentrations. Microb 49:416–424

    CAS  Google Scholar 

  73. Nanjudappa A, Bagyaraj DS, Saxena AK, Kumar M, Chakdar H (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 6:1–10

    Google Scholar 

  74. Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (P32) and nutrient cycling. Appl Environ 63:4408–4412

    Article  CAS  Google Scholar 

  75. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  76. Welc M, Ravnskov S, Kieliszewska-Rokicka B, Larsen J (2010) Suppression of other soil microorganisms by mycelium of arbuscular mycorrhizal fungi in root-free soil. Soil Biol Biochem 42:1534–1540

    Article  CAS  Google Scholar 

  77. Lasudee K, Tokuyama S, Lumyong S, Pathom-Aree W (2018) Actinobacteria associated with arbuscular mycorrhizal Funneliformis mosseae spores, taxonomic characterization and their beneficial traits to plants: evidence obtained from mung bean (Vigna radiata) and thai jasmine rice (Oryza sativa). Front Microbiol 9:1–18

    Article  Google Scholar 

  78. Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  79. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guennoc CM, Rose C, Labbe J, Deveau A (2018) Bacterial biofilm formation on soil fungi: a widespread ability under controls. FEMS Microbiol Ecol 94:1–14

    Google Scholar 

  81. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant Microbe Interact 14:255–260

    Article  CAS  PubMed  Google Scholar 

  82. Iffis B, St-Arnaud M, Hijri M (2014) Bacteria associated with arbuscular mycorrhizal fungi within roots of plants growing in a soil highly contaminated with aliphatic and aromatic petroleum hydrocarbons. FEMS Microbiol Lett 358:44–54

    Article  CAS  PubMed  Google Scholar 

  83. Taktek S, St-Arnaud M, Piche Y, Fortin JA, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 27:13–22

    Article  CAS  PubMed  Google Scholar 

  84. Cabral C, Wollenweber B, António C, Ravnskov S (2019) Activity in the arbuscular mycorrhizal hyphosphere warning neighbouring plants. Front Plant Sci 10:1–11

    Article  Google Scholar 

  85. Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves DSG (2011) Advances in glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  86. Redecker D, Schüßler A, Stockinger H, Stürmer SR, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  87. Sieverding E, Silva GA, Berndt R, Oehl F (2014) Rhizoglomus, a new genus in the Glomeraceae. Mycotaxon 129:373–386

    Article  Google Scholar 

  88. Battini F, Bernardi R, Turrini A, Agnolucci M, Giovannetti M (2016) Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Mycorrhiza 26:699–707

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Division of Microbiology, Indian Agricultural Research Institute for providing all the facilities and assistance.

Funding

This study is partly funded through the Indian Agricultural Research Institute, New Delhi (affiliated to the Indian Council of Agricultural Research -ICAR).

Author information

Authors and Affiliations

Authors

Contributions

SS conceptualized the concept and wrote the first draft and RP provided critical inputs to the contents and edited the manuscript; SS and RP undertook the final revision of the manuscript. All the authors approved the final version submitted.

Corresponding author

Correspondence to Seema Sangwan.

Ethics declarations

Ethics Approval

Not relevant/applicable to the study.

Consent to Participate

All the authors have participated in the investigation and writing of the manuscript.

Consent for Publication

All the authors have consented to the publication.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangwan, S., Prasanna, R. Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant–Arbuscular Mycorrhizal Fungal Associations. Microb Ecol 84, 1–10 (2022). https://doi.org/10.1007/s00248-021-01831-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01831-7

Keywords

Navigation