Skip to main content
Log in

Computational Study of the Effect of Doping with Ti on NaAlH4 Nanocluster Dehydrogenation

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Employing the evolutionary algorithm combined with density functional theory and perturbation theory model, the geometric and electronic structures of pure and titanium-doped Na4Al4H16 clusters are investigated to demonstrate the effect of dopant Ti on the dehydrogenation of the complex hydride NaAlH4 at nanoscale. The result shows the Ti-doped Na4Al4H16 nanoclusters are more stable thermodynamically, while the average dehydrogenation enthalpy and the energy barrier for H2 desorption is decreased. Doping with Ti weakens the Al–H bond and reduces the dehydrogenation temperature, the dehydrogenation performance of the doped nanocluster is promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Chu and A. Majumdar, Nature (London, U.K.) 488, 294 (2012).

    Article  CAS  Google Scholar 

  2. K. T. Møller, T. R. Jensena, E. Akiba, and H.-W. Li, Prog. Nat. Sci., Mater. Int. 27, 34 (2017).

    Google Scholar 

  3. J. H. Wee, Renewable Sustainable Energy Rev. 11, 1720 (2007).

    Article  CAS  Google Scholar 

  4. L. Schlapbach and A. Züttel, Nature (London, U.K.) 414, 353 (2001).

    Article  CAS  Google Scholar 

  5. V. Bérubé, G. Radtke, M. Dresselhaus, and G. Chen, Int. J. Energy Res. 31, 637 (2007).

    Article  CAS  Google Scholar 

  6. H. Benzidi, M. Lakhal, A. Benyoussef, M. Hamedoun, M. Loulidi, A. El kenz, and O. Mounkachi, Int. J. Hydrogen Energy 42, 19481 (2017).

    Article  CAS  Google Scholar 

  7. V. Berube, M. S. Dresselhaus, and G. Chen, Int. J. Hydrogen Energy 34, 1862 (2009).

    Article  CAS  Google Scholar 

  8. A. J. Churchard, E. Banach, A. Borgschulte, R. Caputo, et al., Phys. Chem. Chem. Phys. 13, 16955 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. H. M. Kan, N. Zhang, X. Y. Wang, and H. Sun, Adv. Mater. Res. 512–515, 1438 (2012).

    Article  CAS  Google Scholar 

  10. Sh.-I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, Chem. Rev. 107, 4111 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Yongfeng Liu, Zhuanghe Ren, Xin Zhang, et al., Energy Technol. 6, 487 (2018).

    Article  CAS  Google Scholar 

  12. J. Mao, Z. Guo, H. Leng, Z. Wu, Y. Guo, X. Yu, and H. Liu, J. Phys. Chem. C 26, 11643 (2010).

    Article  CAS  Google Scholar 

  13. Y. Nakagawa, Y. Ikarashi, S. Isobe, S. Hino, and S. Ohnuki, RSC Adv. 4, 20626 (2014).

  14. B. Bogdanovic and M. Schwickardi, J. Alloys Compd. 253, 1 (1997).

    Article  Google Scholar 

  15. X. Zhang, Y. Liu, K. Wang, M. Gao, and H. Pan, Nano Res. 8, 533 (2015).

    Article  CAS  Google Scholar 

  16. P. Wang, X. D. Kang, and H. M. Cheng, J. Phys. Chem. B 109, 20131 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. X. Fan, X. Xiao, L. Chen, et al., J. Phys. Chem. C 115, 2537 (2011).

    Article  CAS  Google Scholar 

  18. J. Hu, S. Ren, R. Witter, and M. Fichtner, Adv. Energy Mater. 2, 560 (2012).

    Article  CAS  Google Scholar 

  19. V. P. Balema and L. Balema, Phys. Chem. Chem. Phys. 7, 1310 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. T. J. Frankcombe, Chem. Rev. 112, 2164 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. J. Iniguez and T. Yildirim, Appl. Phys. Lett. 86, 103109 (2005).

    Article  CAS  Google Scholar 

  22. G. K. P. Dathara and D. S. Mainardi, Mol. Simul. 34, 201 (2008).

    Article  CAS  Google Scholar 

  23. A. J. Du, S. C. Smith, and G. Q. Lu, Phys. Rev. B 74, 193405 (2006).

    Article  CAS  Google Scholar 

  24. G. Miceli, M. Guzzo, C. Cucinotta, and M. Bernasconi, J. Phys. Chem. C 116, 4311 (2012).

    Article  CAS  Google Scholar 

  25. P. Wang, X. D. Kang, and H. M. Cheng, J. Phys. Chem. B 109, 20131 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. K. J. Michel and V. Ozolinş, J. Mater. Chem. A 2, 4438 (2014).

    Article  CAS  Google Scholar 

  27. X.-D. Kang, P. Wang, and H.-M. Cheng, J. Appl. Phys. 100, 034914 (2006).

    Article  CAS  Google Scholar 

  28. A. Schneemann, J. L. White, S. Kang, et al., Chem. Rev. 118, 10775 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Q. Lai, T. Wang, Y. Sun, and K.-F. Aguey-Zinsou, Adv. Mater. Technol. 3 (9), 1700298 (2018).

  30. M. Rueda, L. M. Sanz-Moral, and Á. Martín, J. Supercrit. Fluids 141, 198 (2018).

    Article  CAS  Google Scholar 

  31. T. K. Nielsen, P. Javadian, M. Polanski, F. Besenbacher, J. Bystrzycki, J. Skibsted, and T. R. Jensen, Nanoscale 6, 599 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. R. K. Bhakta, S. Maharrey, V. Stavila, A. Highley, T. Alam, E. Majzoub, and M. Allendorf, Phys. Chem. Chem. Phys. 14, 8160 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. V. Stavila, R. K. Bhakta, T. M. Alam, E. H. Majzoub, and M. D. Allendorf, ACS Nano. 6, 9807 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  36. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  37. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. S. Grimme, J. Chem. Phys. 124, 034108 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. T. A. Halgren and W. N. Lipscomb, Chem. Phys. Lett. 49, 225 (1977).

    Article  CAS  Google Scholar 

  41. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. D.01 (Gaussian, Inc., Wallingford, CT, 2013).

    Google Scholar 

  42. E. H. Majzoub, J. Phys. Chem. C 115, 2636 (2011).

    Article  CAS  Google Scholar 

  43. C. Gonzalez and H. B. Schlegel, J. Chem. Phys. 90, 2154 (1989).

    Article  CAS  Google Scholar 

  44. C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990).

    Article  CAS  Google Scholar 

  45. M. Christian and K.-F. Aguey-Zinsou, Nanoscale 2, 2587 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. A. E. Reed, R. B. Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735 (1985).

    Article  CAS  Google Scholar 

  47. A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

    Article  CAS  Google Scholar 

  48. A. Savin, R. Nesper, S. Wengert, and T. F. Fassler, Angew. Chem., Int. Ed. Engl. 36, 1808 (1997).

    Article  CAS  Google Scholar 

  49. R. Dronskowski and P. E. Bloechl, J. Phys. Chem. 97, 8617 (1993).

    Article  CAS  Google Scholar 

  50. S. Steinberg and R. Dronskowski, Crystals 8, 225 (2018).

    Article  CAS  Google Scholar 

  51. V. L. Deringer, A. L. Tchougreeff, and R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (grant no. 11664034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X. Computational Study of the Effect of Doping with Ti on NaAlH4 Nanocluster Dehydrogenation. Russ. J. Phys. Chem. 95, 1646–1654 (2021). https://doi.org/10.1134/S0036024421080276

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421080276

Keywords:

Navigation