Skip to main content
Log in

Isomerization energies and surface electrostatic potential analyses on nitriles and isocyanides

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Isocyanide-nitrile rearrangement has long been a continuing and interesting topic. A series of nitriles and isocyanides with the substituents of R = -AlH2, -BeH, -BH2, -C≡CH, -CF3, -CH3, -Cl, -C≡N, -COOH, -F, -H, Li, -MgH, -Na, -NH2, -NO2, -OH, -PH2, -SH, -SiH3, and -CH = CH2 were investigated systematically based on full optimization at B3LYP-D3(BJ)/def2-QZVP level, and the isomerization energies from R–C≡N to:C = N-R were estimated. The substituent effect and bonding characters were analyzed by surface ESP colored van der Waals surfaces in conjunction with the global and local electrostatic extrema.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Huang K, Couchman SA, Wilson DJD, Dutton JL, Martin CD (2015) Reactions of imines, nitriles, and isocyanides with pentaphenylborole: Coordination, ring expansion, C-H bond activation, and hydrogen migration reactions. Inorg Chem 54:8957–8968

    Article  CAS  Google Scholar 

  2. Kosar N, Ayub K, Gilani MA, Mahmood T (2019) Benchmark DFT studies on C-CN homolytic cleavage and screening the substitution effect on bond dissociation energy. J Mol Model 25:47

    Article  Google Scholar 

  3. Sarkar N, Bera S, Nembenna S (2020) Aluminum-catalyzed selective hydroboration of nitriles and alkynes: A multifunctional catalyst. J Org Chem 85:4999–5009

    Article  CAS  Google Scholar 

  4. Li Y, Wang X, Wang H, Ni Y, Wang H (2021) Influence of halogen atom substitution and neutral HCN/anion CN Lewis base on the triel-bonding interactions. J Mol Model 27:93

    Article  CAS  Google Scholar 

  5. Rüchardt C, Meier M, Haaf K, Pakusch J, Wolber EKA, Müller B (1991) The isocyanide–cyanide rearrangement; Mechanism and preparative applications. Angew Chem Int Ed Engl 30:893–901

    Article  Google Scholar 

  6. Sung K (1999) Substituent effects on stability and isomerization energies of isocyanides and nitriles. J Org Chem 64:8984–8989

    Article  CAS  Google Scholar 

  7. Nguyen PT, Palmer WS, Woerpel KA (1999) Stereospecific and regioselective isocyanide insertions into siliranes and reactions of the resulting iminosilacyclobutanes. J Org Chem 64:1843–1848

    Article  CAS  Google Scholar 

  8. Huang R, Shen Q, Zhang C, Zhang S, Xu H (2020) Studies on the mechanism of the transition metal-catalyzed reaction of organonitrile with sodium azide. Acta Chim Sinica 78:565–571 ((In Chinese))

    Article  Google Scholar 

  9. Gutiérrez-Oliva S, Díaz S, Toro-Labbé A, Lane P, Murray JS, Politzer P (2014) Revisiting the seemingly straightforward hydrogen cyanide/hydrogen isocyanide isomerisation. Mol Phys 112:349–354

    Article  Google Scholar 

  10. Pracna P, Urban J, Votava O, Meltzerová Z, Urban Š, Horneman V-M (2011) Rotational and rovibrational spectroscopy of the v8 = 1 and 2 vibrational states of CH3NC. Mol Phys 109:2237–2243

    Article  CAS  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  12. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr G (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  14. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comp Chem 32:1456–1465

    Article  CAS  Google Scholar 

  15. Lu T, Chen F (2013) Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2). J Mol Model 19:5387–5395

    Article  CAS  Google Scholar 

  16. Witte J, Goldey M, Neaton JB, Head-Gordon M (2015) Beyond energies: Geometries of nonbonded molecular complexes as metrics for assessing electronic structure approaches. J Chem Theory Comput 11:1481–1492

    Article  CAS  Google Scholar 

  17. Di Meo F, Bayach I, Trouillas P, Sancho-García J-C (2015) Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols. J Mol Model 21:291

    Article  Google Scholar 

  18. Řezáč J (2020) Non-Covalent Interactions Atlas benchmark data sets 2: Hydrogen bonding in an extended chemical space. J Chem Theory Comput 16:6305–6316

    Article  Google Scholar 

  19. Cheng X (2020) Computational insights into the coupling mechanism of benzoic acid, phenyl alkynyl ether and dihydroisoquinoline catalyzed by silver ion as polarizer and stabilizer. Appl Organometal Chem 34:e5903

    Article  CAS  Google Scholar 

  20. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  21. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323

    Article  Google Scholar 

  22. Manzetti S, Lu T (2013) The geometry and electronic structure of aristolochic acid: Possible implications for a frozen resonance. J Phys Org Chem 26:473–483

    Article  CAS  Google Scholar 

  23. Zhang Z, Lu T, Ding L, Wang G, Wang Z, Zheng B, Liu Y, Ding XL (2020) Cooperativity effects between regium-bonding and pnicogen-bonding interactions in ternary MF···PH3O···MF (M = Cu, Ag, Au): An ab initio study. Mol Phys 118:e1784478

    Article  Google Scholar 

  24. Ren F, Shi W, Cao D, Li Y, Zhang D, Wang X, Shi Z (2020) External electric field reduces the explosive sensitivity: A theoretical investigation into the hydrogen transference kinetics of the NH2NO2∙∙∙H2O complex. J Mol Model 26:351

    Article  CAS  Google Scholar 

  25. Zhang Y, Gou R, Chen Y (2021) Theoretical insight on effect of DMSO-acetonitrile co-solvent on the formation of CL-20/HMX cocrystal explosive. J Mol Model 27:8

    Article  CAS  Google Scholar 

  26. Lu T, Chen F (2012) Multiwfn: A Multifunctional wave function analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  27. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  28. Zhang J (2018) LIBRETA: Computerized optimization and code synthesis for electron repulsion integral evaluation. J Chem Theory Comput 14:572–587

    Article  CAS  Google Scholar 

  29. Ehrenson S, Brownlee RTC, Taft RW (1973) A generalized treatment of substituent effects in the benzene series. A statistical analysis by the dual substituent parameter equation (1). Prog Phys Org Chem 10:1–80

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2017LB010) and the Science and Technology Planning Project (Guidance Plan) of Tai’an City (No. 2018GX0041).

Author information

Authors and Affiliations

Authors

Contributions

Yanyun Zhao: Software; Formal analysis; Investigation; Writing, original draft. Xueli Cheng: Conceptualization; Methodology; Software; Writing, original draft and editing; Management and responsibility for the research activity planning and execution.

Corresponding author

Correspondence to Xueli Cheng.

Ethics declarations

Consent for publication

Written informed consent for publication was obtained from all participants.

Conflicts of interest

The authors declare have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 778 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Cheng, X. Isomerization energies and surface electrostatic potential analyses on nitriles and isocyanides. J Mol Model 27, 257 (2021). https://doi.org/10.1007/s00894-021-04870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04870-6

Keywords

Navigation