Skip to main content

Advertisement

Log in

A survey of Antarctic cyanobacteria

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This review compiles principal data on Antarctic cynobacteria published in recent decades and focuses on the diversity, environmental adaptations, and ecotypes of these microorganisms. Multidisciplinary investigation of Antarctica is important especially in times of global climate change and anthropogenic threats to unaltered ecosystems. Antarctica, which has been disconnected from Gondwana for the last 65 Myr, harbors relict biota mainly including microorganisms adapted to multiextreme environments. Cyanobacteria represent the most well studied Antarctic microorganisms related to the cell biology, abundance, distribution, and symbioses. However, substantial drawbacks remain, e.g., (i) the diversity of Antarctic cyanobacteria has been evaluated without a consensus between bacteriologists and phycologists due to the intricate interplay of morphological records, genomic data and culturing restrictions as well as taxonomic obstacles; (ii) although the main strategy of Antarctic cyanobacteria is biofilms (in particular, microbial mats), detailed knowledge on these symbiotic systems is still fragmentary; (iii) the specificity of the ‘Antarctic cyanobacteria biosphere’ should be better understood in light of unresolved questions related to endemism in prokaryotes, and (iv) the strains of Antarctic cyanobacteria maintained in culture are not numerous and not very diverse. These issues are at the forefront of cyanobacteriology, which is supported by related biosciences and earth sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achberger, A. M., B. C. Christner, A. B. Michaud, et al., 2016. Microbial community structure of subglacial Lake Whillans, West Antarctica. Frontiers in Microbiology 7: 1457.

    PubMed  PubMed Central  Google Scholar 

  • Alger, A., D. M. McKnight & S. A. Spaulding, 1997. Ecological Processes in a Cold Desert Ecosystem: The Abundance and Species Distribution of Algal Mats in Glacial Meltwater Streams in Taylor Valley. Institute of Arctic and Alpine Research. Occasional Paper 51. Boulder, CO: University of Colorado: 108 pp.

  • Allende, L. & G. Mataloni, 2013. Short-term analysis of the phytoplankton structure and dynamics in two ponds with distinct trophic states from Cierva Point (maritime Antarctica). Polar Biology 36: 629–644.

    Google Scholar 

  • Andersen, D. T., D. Y. Sumner, I. Hawes, et al., 2011. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9: 280–293.

    CAS  PubMed  Google Scholar 

  • Archer, S., I. R. McDonald, C. W. Herbold, et al., 2015. Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Frontiers in Microbiology 6: Art. 485.

  • Averina, S. G., N. V. Velichko, A. A. Pinevich, et al., 2019. Non-a chlorophylls in cyanobacteria. Photosynthetica 57: 1109–1118.

    CAS  Google Scholar 

  • Bahl, J., M. C. Y. Lau, G. J. D. Smith, et al., 2011. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications 2: 1–6.

    Google Scholar 

  • Biondi, N., M. Tredici, A. Taton, et al., 2008. Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. Journal of Applied Microbiology 105: 105–115.

    CAS  PubMed  Google Scholar 

  • Bonaventura, S. M., V. A. Vinocur, L. Allende, et al., 2006. Algal structure of the littoral epilithon in lentic water bodies at Hope Bay, Antarctic Peninsula. Polar Biology 29: 668–680.

    Google Scholar 

  • Bottos, E. M., J. W. Scarrow, S. D. J. Archer, et al., 2014. Bacterial community structures of Antarctic soils. In Cowan, D. A. (ed.), Antarctic Terrestrial Microbiology. Springer, Berlin: 9–33.

    Google Scholar 

  • Bowman, J. S., S. Rasmussen, N. Blom, et al., 2012. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S rRNA gene. The ISME Journal 6: 11–20.

    CAS  PubMed  Google Scholar 

  • Bowman, J.P., S.M. Rea, S.A. McCammon, et al., 2000. Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environmental Microbiology 2: 227–237.

    CAS  PubMed  Google Scholar 

  • Brinkmann, M., D. A. Pearce, P. Convey, et al., 2007. The cyanobacterial community of polygon soils at an inland Antarctic nunatak. Polar Biology 30: 1505–1511.

    Google Scholar 

  • Broady, P. A., 1979. The terrestrial algae of Signy Island, South Orkney Islands. British Antarctic Survey Scientific Reports 98: 1–117.

    Google Scholar 

  • Broady, P. A., 1981. The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. British Phycological Journal 16: 231–240.

    Google Scholar 

  • Broady, P. A., 1986. Ecology and taxonomy of the Vestfold Hills. In Pickard, J. (ed.), Antarctic Oasis: Terrestrial Evironments and History of the Vestfold Hills. Academic, Sydney: 165–202.

    Google Scholar 

  • Broady, P. A., 1989a. Broadscale patterns in the distribution of aquatic and terrestrial vegetation at three ice-free regions on Ross Island, Antarctica. Hydrobiologia 172: 77–95.

    Google Scholar 

  • Broady, P. A., 1989b. Survey of algae and other terrestrial biota from Edward VII Peninsula, Marie Byrd Land. Antarctic Science 1: 215–224.

    Google Scholar 

  • Broady, P., 1996. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodiversity and Conservation 5: 1307–1335.

    Google Scholar 

  • Broady, P. A. & A. Kibblewhite, 1991. Morphological characterization of Oscillatoria (Cyanobacteria) from Ross Island and southern Victoria Land, Antarctica. Antarctic Science 3: 35–45.

    Google Scholar 

  • Broady, P. A. & R. N. Weinstein, 1998. Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarctic Science 10: 376–385.

    Google Scholar 

  • Broady, P. A., R. Garrick & G. Anderson, 1984. Culture studies on the morphology of ten strains of Antarctic Oscillatoriaceae (Cyanobacteria). Polar Biology 2: 233–244.

    Google Scholar 

  • Büdel, B., J. Bendix, F. R. Bicker, et al., 2008. Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor valley, Antarctica. Journal of Phycology 44: 1415–1424.

    PubMed  Google Scholar 

  • Cameron, R. E., 1972. Microbial and ecological investigations in Victoria Dry Valley, Southern Victoria Land, Antarctica. In Llano, G. A. (ed.), Antarctic Terrestrial Biology. American Geophysical Union, Washington, DC: 195–260.

    Google Scholar 

  • Cameron, K. A., A. J. Hodson & A. M. Osborn, 2012. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiology Ecology 82: 254–267.

    CAS  PubMed  Google Scholar 

  • Casamatta, D. A., J. R. Johansen, M. L. Vis, et al., 2005. Molecular and ultrastructural characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). Journal of Phycology 41: 421–438.

    CAS  Google Scholar 

  • Castenholz, R. W., 2001. General characteristics of the Cyanobacteria. In Boone, D. R., R. W. Castenholz & G. M. Garrity (eds), Bergey’s Manual of Systematic Bacteriology, Vol. I. Springer, New York: 474–487.

    Google Scholar 

  • Castenholz, R. W. & A. J. Schneider, 1993. Cyanobacterial dominance at high and low temperatures: optimal conditions of precarious existence? In Guerrero, R. & C. Pedros-Alio (eds), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona: 19–24.

    Google Scholar 

  • Cavacini, P., 2001. Soil algae from northern Victoria Land (Antarctica). Polar Bioscience 14: 45–60.

    Google Scholar 

  • Cavicchioli, R., 2016. On the concept of a psychrophile. The ISME Journal 10: 793–795.

    PubMed  Google Scholar 

  • Chamot, D., W. Magee, Y. Esther, et al., 1999. A cold shock-induced cyanobacterial RNA helicase. Journal of Bacteriology 181: 1728–1732.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chintalapati, S., M. D. Kiran & S. Shivaji, 2004. Role of membrane lipid fatty acids in cold adaptation. Cellular and Molecular Biology 50: 631–642.

    CAS  PubMed  Google Scholar 

  • Chong, C. W., Y. S. Goh, P. Convey, et al., 2013. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates. Extremophiles 17: 733–745.

    PubMed  Google Scholar 

  • Chong, C. W., D. A. Pearce & P. Convey, 2015. Emerging spatial patterns in Antarctic prokaryotes. Frontiers in Microbiology 6: 1–14.

    Google Scholar 

  • Chrismas, N. A. M., A. M. Anesio & P. Sanchez-Baracaldo, 2015. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Frontiers in Microbiology 6: 1070.

    PubMed  PubMed Central  Google Scholar 

  • Chrismas, N. A. M., G. Barker, A. M. Anesio, et al., 2016. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics 17: 533.

    PubMed  PubMed Central  Google Scholar 

  • Cockell, C. S. & M. D. Stokes, 2004. Widespread colonization by polar hypoliths. Nature 431: 414.

    CAS  PubMed  Google Scholar 

  • Cockell, C. S. & M. D. Stokes, 2006. Hypolithic colonization of opaque rocks in the Arctic and Antarctic Polar Desert. Arctic, Antarctic, and Alpine Research 38: 335–342.

    Google Scholar 

  • Comte, K., M. Šabacka, A. Carre-Mlouk, et al., 2007. Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiology Ecology 59: 366–376.

    CAS  PubMed  Google Scholar 

  • Convey, P., 2013. Antarctic ecosystems. In Levin, S. A. (ed.), Encyclopedia of Biodiversity. Elsevier, San-Diego: 179–188.

    Google Scholar 

  • Cornet, L., A. Wilmotte, E. J. Javaux & D. Baurain, 2018. A constrained SSU-rRNA phylogeny records the unsequenced diversity of photosynthetic Cyanobacteria (Oxyphotobacteria). BMC Research Notes 11: 435.

    PubMed  PubMed Central  Google Scholar 

  • Costerton, J. W., Z. Lewandowski, D. E. Caldwell, et al., 1995. Microbial biofilms. Annual Reviews in Microbiology 49: 711–745.

    CAS  Google Scholar 

  • Cowan, D. A., A. Sohm, T. P. Makhalanyane, et al., 2011. Hypolithic communities: important sources in Antarctic desert soils. Environmental Microbiology Reports 5: 581–586.

    Google Scholar 

  • Curren, E. & S. C. Y. Leong, 2020. Natural and anthropogenic dispersal of cyanobacteria: a review. Hydrobiologia 847: 2801–2822.

    CAS  Google Scholar 

  • D’Amico, S., T. Collins, J.-C. Marx, et al., 2006. Psychrophilic microorganisms: challenges for life. EMBO Reports 7: 385–389.

    PubMed  PubMed Central  Google Scholar 

  • de la Torre, J. R., B. M. Goebel, E. I. Friedmann, et al., 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology 69: 3858–3867.

    PubMed  PubMed Central  Google Scholar 

  • de los Rios, A., C. Ascaso, J. Wierzchos, et al., 2004. Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Applied and Environmental Microbiology 70: 569–580.

    PubMed Central  Google Scholar 

  • de los Ríos, A., M. Grube, L. G. Sancho, et al., 2007. Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology 59: 386–395.

    PubMed  Google Scholar 

  • Ellis-Evans, J. C., 1996. Microbial diversity and function in Antarctic freshwater ecosystems. Biodiversity and Conservation 5: 1395–1431.

    Google Scholar 

  • Faluaburu, M. S., R. Nakai, S. Imura, et al., 2019. Phylotypic characterization of mycobionts and photobionts of rock tripe lichen in East Antarctica. Microorganisms 7: 203.

    CAS  PubMed Central  Google Scholar 

  • Fermani, P., G. Mataloni & B. Van de Vijver, 2007. Soil microalgal communities on an active volcano (Deception Island, South Shetlands). Polar Biology 30: 1381–1393.

    Google Scholar 

  • Fountain, A. G., W. B. Lyons, M. Burkins, et al., 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49: 961–971.

    Google Scholar 

  • Franznann, P.D., E. Stackebrandt, K.S. Anderson, et al., 1988. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Systematic and Applied Microbiology 11: 20-27.

    Google Scholar 

  • Friedmann, E. I., M. Hua & R. Ocampo-Friedmann, 1988. Cryptoendolithic lichen and cyanobacterial communities of the Ross desert, Antarctica. Polarforschung 58: 251–259.

    CAS  PubMed  Google Scholar 

  • Fritsen, C. H. & J. C. Priscu, 1998. Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: distribution, growth rate and temperature response of photosynthesis. Journal of Phycology 34: 587–597.

    Google Scholar 

  • Gasparon, M. & J. S. Burgess, 2000. Human impacts in Antarctica: trace element geochemistry of freshwater lakes of the Larsemann Hills, East Antarctica. Environmental Geology 39: 963–976.

    CAS  Google Scholar 

  • Gilichinsky, D. A., J. S. Wilson, E. I. Friedman, et al., 2007. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7: 275–311.

    CAS  PubMed  Google Scholar 

  • Gillieson, D., J. Burgess, A. Spate & A. Cohrane, 1990. An Atlas of the Lakes of the Larsemann Hills, Princess Elisabeth Land, Antarctica. ANARE Research Notes 74.

  • Goldmann, C. R., D. T. Mason & J. E. Hobbie, 1967. Two Antarctic desert lakes. Limnology and Oceanography 12: 295–310.

    Google Scholar 

  • Golubič, S. & J. Schneider, 2003. Microbial endoliths and internal biofilms. In Krumbein, W. E., D. M. Paterson, G. A. Zavarzin, et al. (eds), Fossil and Recent Biofilms, a Natural History of Life on Planet Earth. Kluwer Academic Publishers, Dordrecht: 249–263.

    Google Scholar 

  • González Garraza, G., G. Mataloni, P. Fermani, et al., 2011. Ecology of algal communities of different soil types from Cierva Point, Antarctic Peninsula. Polar Biology 34: 339–351.

    Google Scholar 

  • Gordon, D. A., J. C. Priscu & S. Giovannoni, 2000. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microbial Ecology 39: 197–202.

    PubMed  Google Scholar 

  • Hawes, I., 1990. Eutrophication and vegetation development in maritime Antarctic lakes. In Kerry, K. R. & G. Hempel (eds), Antarctic Ecosystems: Ecological Change and Conservation. Springer, Berlin: 83–90.

    Google Scholar 

  • Herbert, R. A. & A. C. Tanner, 1977. The isolation and some characteristics of photosynthetic bacteria (Chromatiaceae and Chlorobiaceae) from Antarctic marine sediments. Journal of Applied Bacteriology 43: 437–445.

    Google Scholar 

  • Hodgson, D. A., 2012. Antarctic lakes. In Bengtsson, L., R. W. Herschy & R. W. Fairbridge (eds), Encyclopedia of Lakes and Reservoirs. Springer, Dordrecht: 26–31.

    Google Scholar 

  • Hoffmann, L., J. Komárek & J. Kaštovský, 2005. System of cyanoprokaryotes (cyanobacteria) — state in 2004. Algological Studies 117: 95–115.

    Google Scholar 

  • Hughes, K. A. & B. Lawley, 2003. A novel Antarctic microbial endolithic community within gypsum crystals. Environmental Microbiology 5: 555–565.

    PubMed  Google Scholar 

  • Izaguirre, I. & H. Pizarro, 2000. Ecology and taxonomy of the epilithic algal community from a stream in Cierva Point (Antarctic Peninsula). SIL Proceedings 27: 223–229.

    Google Scholar 

  • Jadoon, W. A., R. Nakai & T. Naganuma, 2013. Biogeographical note on Antarctic microflorae: endemism and cosmopolitanism. Geoscience Frontiers 4: 633–646.

    Google Scholar 

  • Ji, M., C. Greening, I. Vanwonterghem, et al., 2017. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552: 400–403.

    CAS  PubMed  Google Scholar 

  • Jungblut, A. D. & W. F. Vincent, 2017. Cyanobacteria in polar and alpine ecosystems. In Margesin, R. (ed.), Psychrophiles: From Biodiversity to Biotechnology. Springer, Berlin: 181–206.

    Google Scholar 

  • Jungblut, A. D., I. Hawes, D. Mountfort, et al., 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology 7: 519–529.

    CAS  PubMed  Google Scholar 

  • Jungblut, A. D., C. Lovejoy & W. F. Vincent, 2010. Global distribution of cyanobacterial ecotypes in the cold biosphere. The ISME Journal 4: 191–202.

    CAS  PubMed  Google Scholar 

  • Jungblut, A. D., I. Hawes, T. J. Mackey, et al., 2016. Microbial mat communities along an oxygen gradient in a perennially ice-covered Antarctic lake. Applied and Environmental Microbiology 82: 620–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinteich, J., F. Hildebrand, S. A. Wood, et al., 2014. Diversity of toxin and non-toxin containing cyanobacterial mats of meltwater ponds on the Antarctic Peninsula: a pyrosequencing approach. Antarctic Science 26: 521–532.

    Google Scholar 

  • Kohler, T. J., D. J. Van Horn, J. P. Darling, et al., 2016. Nutrient treatments alter microbial mat colonization in two glacial meltwater streams from the McMurdo Dry Valleys, Antarctica. FEMS Microbiology Ecology 92: fiw049.

    PubMed  Google Scholar 

  • Komárek, J., 1999. Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica – a survey. Algological Studies 94: 181–193.

    Google Scholar 

  • Komárek, J., 2007. Phenotype diversity of the cyanobacterial genus Leptolyngbya in the maritime Antarctic. Polish Polar Research 28: 211–231.

    Google Scholar 

  • Komárek, J., 2013. Phenotypic and ecological diversity of freshwater coccoid cyanobacteria from maritime Antarctica and Islands of NW Weddell Sea. I. Czech Polar Reports 3: 130–143.

    Google Scholar 

  • Komárek, J., 2014. Phenotypic and ecological diversity of freshwater coccoid cyanobacteria from maritime Antarctica and Islands of NW Weddell Sea. II. Czech Polar Reports 4: 17–39.

    Google Scholar 

  • Komárek, J., 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology 51: 346–353.

    Google Scholar 

  • Komárek, J., 2018. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811: 7–17.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota. I. Chroococcales. In Ettl, H., G. Gärtner, H. Heynig, et al. (eds), Süßwasserflora von Mitteleuropa, Begründet von A. Pascher, Bd. 19/3 Cyanoprokaryota. 1. Teil Chroococcales. Spektrum, Akademischer Verlag, Heidelberg: 1–548.

    Google Scholar 

  • Komárek, O. & J. Komárek, 2010. Diversity and ecology of cyanobacterial microflora of the seepage habitats: comparison of King George Island, Shetland Islands, and James Ross Island, New Weddell Sea, Antarctica. In Seckbach, J. & A. Oren (eds), Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems, Vol. 14. Springer, Dordrecht: 515–553.

    Google Scholar 

  • Komárek, J., J. Elster & O. Komárek, 2008. Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biology 31: 853–865.

    Google Scholar 

  • Komárek, J., J. Kaštovský, J. Mareš & J. R. Johansen, 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–335.

    Google Scholar 

  • Komárek, J., D. B. Genuario, M. F. Fiore, et al., 2015. Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biology 38: 475–492.

    Google Scholar 

  • Koo, H., N. Mojib, J. A. Hakim, et al., 2017. Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from lake Untersee, East Antarctica. Frontiers in Microbiology 8: 1347.

    PubMed  PubMed Central  Google Scholar 

  • Kublanovskaya, A., K. Chekanov, A. Solovchenko, et al., 2019. Cyanobacterial diversity in the algal–bacterial consortia from Subarctic regions: new insights from the rock baths at White Sea Coast. Hydrobiologia 830: 17–31.

    CAS  Google Scholar 

  • Kublanovskaya, A., O. Baulina, K. Chekanov et al., 2020. The microalga Haematococcus lacustris (Chlorophyceae) forms natural biofilms in supralittoral White Sea coastal rock ponds. Planta 252: Art 37.

  • Lacap-Bugler, D. C., K. K. Lee, S. Archer, et al., 2017. Global diversity of desert hypolithic cyanobacteria. Frontiers in Microbiology 8: 867.

    PubMed  PubMed Central  Google Scholar 

  • Lambrechts, S., A. Willems & G. Tahon, 2019. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach. Frontiers in Microbiology 10: 242.

    PubMed  PubMed Central  Google Scholar 

  • Lara, Y., B. Durieu, L. Cornet, et al., 2017. Draft genome sequence of the axenic strain Phormidesmis priestleyi ULC007, a cyanobacterium isolated from Lake Bruehwiler (Larsemann Hills, Antarctica). Genome Announcements 5: e01546-16.

    PubMed  PubMed Central  Google Scholar 

  • Laybourn-Parry, J. & D. A. Pearce, 2007. The biodiversity and ecology of Antarctic lakes: models for evolution. Philosophical Transactions of Royal Society of London (Series B) 362: 2273–2289.

    CAS  Google Scholar 

  • Lionard, M., B. Péquin, C. Lovejoy, et al., 2012. Benthic cyanobacterial mats in the high Arctic: multi-layer structure and fluorescence responses to osmotic stress. Frontiers in Microbiology 3: 140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., T. Yao, S. Kang, et al., 2006. Seasonal variation of snow microbial community structure in the East Rogbuk glacier, Mt. Everest. China Science Bulletin 51: 1476–1486.

    CAS  Google Scholar 

  • Lopatina, A., S. Medvedev, S. Shmakov, et al., 2016. Metagenomic analysis of bacterial communities of Antarctic surface snow. Frontiers in Microbiology 7: 398.

    PubMed  PubMed Central  Google Scholar 

  • Los, D. A. & N. Murata, 1999. Responses to cold shock in cyanobacteria. Journal of Molecular Microbiology and Biotechnology 1: 221–230.

    CAS  PubMed  Google Scholar 

  • Mackey, T. J., D. Y. Sumner, I. Hawes, et al., 2015. Growth of modern branched columnar stromatolites in Lake Joyce, Antarctica. Geobiology 13: 373–390.

    CAS  PubMed  Google Scholar 

  • Makhalanyane, T. P., A. Valverde, F. Gunnigle, et al., 2015. Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews 39: 203–221.

    CAS  PubMed  Google Scholar 

  • Martineau, E., S. A. Wood, M. R. Miller, et al., 2013. Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia 711: 139–154.

    CAS  Google Scholar 

  • Mataloni, G. & J. Komárek, 2004. Gloeocapsopsis aurea, a new subaerophytic cyanobacterium from maritime Antarctica. Polar Biology 27: 623–628.

    Google Scholar 

  • Mataloni, G. & M. Pose, 2001. Non-marine algae from islands near Cierva Point, Antarctic Peninsula. Cryptogamie/Algologie 22: 41–64.

    Google Scholar 

  • Mataloni, G., G. Tell & D. D. Wynn-Williams, 2000. Structure and diversity of soil algal communities from Cierva Point (Antarctic Peninsula). Polar Biology 23: 205–211.

    Google Scholar 

  • Mataloni, G., A. Vinocur & P. de Tezanos Pinto, 2005. Abiotic characterization and epilithic communities of a naturally enriched stream at Cierva Point, Antarctic Peninsula. Antarctic Science 17: 163–170.

    Google Scholar 

  • McKnight, D. M., A. Alger, C. M. Tate, et al., 1998. Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, southern Victoria Land, Antarctica. In Priscu, J. C. (ed.), Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, DC: 109–127.

    Google Scholar 

  • McKnight, D. M., D. K. Niyogi, A. S. Alger, et al., 1999. Dry valley streams in Antarctica: ecosystems waiting for water. Bioscience 49: 985–995.

    Google Scholar 

  • McKnight, D. M., R. L. Runkel, C. M. Tate, et al., 2004. Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. Journal of the North American Benthological Society 23: 171–188.

    Google Scholar 

  • Micheli, C., R. Cianchi, R. Paperi, et al., 2014. Antarctic cyanobacteria biodiversity based on ITS and TrnL sequencing and its ecological implication. Open Journal of Ecology 4: 456–467.

    Google Scholar 

  • Mueller, D. R. & W. H. Pollard, 2004. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology 27: 66–74.

    Google Scholar 

  • Mueller, D. R. & W. F. Vincent, 2006. Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrological Processes 20: 857–876.

    CAS  Google Scholar 

  • Nadeau, T. L. & R. W. Castenholz, 2000. Characterization of psychrophilic Oscillatorians (Cyanobacteria) from Antarctic meltwater ponds. Journal of Phycology 36: 914–923.

    Google Scholar 

  • Nadeau, T. L., E. C. Milbrandt & R. W. Castenholz, 2001. Evolutionary relationships of cultivated Antarctic oscillatoriaceans (cyanobacteria). Journal of Phycology 37: 650–654.

    Google Scholar 

  • Namsaraev, Z., M.-J. Mano, R. Fernandez & A. Wilmotte, 2010. Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Annals of Glaciology 51: 171–177.

    Google Scholar 

  • Niederberger, T. D., J. A. Sohm, J. Tirindelli, et al., 2012. Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology 82: 376–390.

    CAS  PubMed  Google Scholar 

  • Nienow, J. A. & E. L. Friedmann, 1993. Terrestrial lithophytic (rock) communities. In Friedmann, L. (ed.), Antarctic Microbiology. Wiley, New York: 343–412.

    Google Scholar 

  • Núñez-Montero, K. & L. Barrientos, 2018. Advances in Antarctic research for antimicrobial discovery: a comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics 7: 90.

    PubMed Central  Google Scholar 

  • Omelon, C. R., 2008. Endolithic microbial communities in polar desert habitats. Geomicrobiology Journal 25: 404–414.

    Google Scholar 

  • Oren, A. & S. Ventura, 2017. The current status of cyanobacterial nomenclature under the ‘‘prokaryotic’’ and the ‘‘botanical’’ code. Antonie van Leeuwenhoek, International Journal of General and Molecular Biology 110: 1257–1269.

    CAS  Google Scholar 

  • Paerl, H. W. & J. C. Priscu, 1998. Microbial phototrophic, heterotrophic and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. FEMS Microbiology Ecology 36: 221–230.

    CAS  Google Scholar 

  • Palinska, K. A. & W. Surosz, 2014. Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia 740: 1–11.

    Google Scholar 

  • Palinska, K. A., T. S. Schneider & W. Surosz, 2017. Phenotypic and phylogenetic studies of benthic mat-forming cyanobacteria on the NW Svalbard. Polar Biology 40: 1607–1616.

    Google Scholar 

  • Pandey, K. D., S. P. Shukla, P. N. Shukla, et al., 2004. Cyanobacteria in Antarctica: ecology, physiology and cold adaptation. Cellular and Molecular Biology 50: 575–584.

    CAS  PubMed  Google Scholar 

  • Parker, B. C., G. M. Simmons, F. G. Love, et al., 1981. Modern stromatolites in Antarctic dry valley lakes. BioScience 31: 656–661.

    Google Scholar 

  • Pearce, D. A., K. K. Newsham, M. A. Thorne, et al., 2012. Metagenomic analysis of a southern maritime Antarctic soil. Frontiers in Microbiology 3: 403.

    PubMed  PubMed Central  Google Scholar 

  • Pessi, I. S., C. Osorio-Forero, E. J. C. Galvez, et al., 2015. Distinct composition signatures of archaeal and bacterial phylotypes in the Wanda Glacier forefield, Antarctic Peninsula. FEMS Microbiology Ecology 91: 1–10.

    PubMed  Google Scholar 

  • Pessi, I. S., P. D. C. Maalouf, H. D. Laughinghouse, et al., 2016. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. Journal of Phycology 52: 356–368.

    CAS  PubMed  Google Scholar 

  • Pessi, I. S., Y. Lara, B. Durieu, et al., 2018. Community structure and distribution of benthic cyanobacteria in Antarctic lacustrine microbial mats. FEMS Microbiology Ecology 94: 1–13.

    Google Scholar 

  • Pointing, S. B., B. Bollard-Breen & L. N. Gillman, 2014. Diverse cryptic refuges for life during glaciation. Proceedings of National Academy of Sciences of USA 111: 5452–5453.

    CAS  Google Scholar 

  • Pointing, S. B., B. Buedel, P. Convey, et al., 2015. Biogeography of photoautotrophs in the high polar bioms. Frontiers in Plant Science and Functional Plant Ecology 6: 692.

    Google Scholar 

  • Porankiewicz, J., J. Schelin & A. K. Clarke, 2002. The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Molecular Microbiology 29: 275–283.

    Google Scholar 

  • Porcino, R., A. Cosenza & M. Azzaro, 2020. A review on the geochemistry of lakes in Victoria Land (Antarctica). Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126229.

    Article  PubMed  Google Scholar 

  • Prieto-Barajas, C. M., E. Valencia-Cantero & G. Santoyo, 2018. Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electronic Journal of Biotechnology 31: 48–56.

    Google Scholar 

  • Priscu, J. C. (ed.), 1998. Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series V. 72, American Geophysical Union 72: 369 pp.

  • Priscu, J. C., C. H. Fritsen, H. W. Paerl, et al., 2005. Perennial Antarctic lake ice: a refuge for cyanobacteria in an extreme environment. In Castello, J. D. & S. O. Rogers (eds), Life in Ancient Ice. Princeton Press, Princeton: 22–49.

    Google Scholar 

  • Proteau, P. J., W. H. Gerwick, F. Garcia-Pichel, et al., 1993. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825–829.

    CAS  PubMed  Google Scholar 

  • Psenner, R. & B. Sattler, 1998. Life at the freezing point. Science 280: 2073–2074.

    CAS  PubMed  Google Scholar 

  • Pushkareva, E., I. S. Pessi, Z. Namsaraev, et al., 2018. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains, Antarctica. Systematic and Applied Microbiology 41: 363–373.

    CAS  PubMed  Google Scholar 

  • Quesada, A. & W. F. Vincent, 1999. Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology 32: 335–342.

    Google Scholar 

  • Quesada, A. & W. F. Vincent, 2012. Cyanobacteria in the cryosphere: snow, ice and extreme cold. In Whitton, B. A. (ed.), Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer, Dordrecht: 387–399.

    Google Scholar 

  • Quesada, A., W. F. Vincent, E. Kaup, et al., 2006. Landscape control of high latitude lakes in a changing climate. In Bergstrom, D. M. & P. Convey (eds), Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator. Springer, Dordrecht: 221–252.

    Google Scholar 

  • Raymond, J. A. & C. H. Fritsen, 2000. Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organisms. Antarctic Science 12: 418–424.

    Google Scholar 

  • Raymond, J. A., C. H. Fritsen & K. Shen, 2007. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiology Ecology 61: 214–221.

    CAS  PubMed  Google Scholar 

  • Rego, A., F. Raio, T. Martins, et al., 2018. Actinobacteria and cyanobacteria diversity in terrestrial Antarctic microenvironments evaluated by culture-dependent and independent methods. Frontiers in Microbiology 10: 1018.

    Google Scholar 

  • Ribeiro, K. F., L. Duarte & L. O. Crosetti, 2018. Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia 820: 23–48.

    CAS  Google Scholar 

  • Rigonato, J., W. A. Gama, D. O. Alvarenga, et al., 2016. Aliterella atlantica gen. nov., sp. nov., and Aliterella antarctica sp. nov., novel members of coccoid Cyanobacteria. International Journal of Systematic and Evolutionary Microbiology 66: 2853–2861.

    CAS  PubMed  Google Scholar 

  • Rippka, R., J. Deruelles, J. B. Waterbury, et al., 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.

    Google Scholar 

  • Roos, J. C. & W. F. Vincent, 1998. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology 34: 118–125.

    Google Scholar 

  • Rossi, F. & R. De Philippis, 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5: 1218–1238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruisi, S., D. Barreca, L. Selbmann, et al., 2007. Fungi in Antarctica. Reviews in Environmental Science and Bio/Technology 6: 127–141.

    Google Scholar 

  • Russell, N. J., 2009. Psychrophily and resistance to low temperature. In Gerday, C. & N. Glansdorff (eds), Extremophiles, Vol. II. EOLSS Publishers Co, Oxford: 1–32.

    Google Scholar 

  • Ryan, P. G., B. P. Watkins, R. I. L. Smith, et al., 1989. Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species lists. South African Journal of Antarctic Research 19: 10–20.

    Google Scholar 

  • Sabacká, M. & J. Elster, 2006. Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biology 30: 31–37.

    Google Scholar 

  • Sabbe, K., D. A. Hodgson, E. Verleyen, et al., 2004. Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshwater Biology 49: 296–319.

    Google Scholar 

  • Seaburg, K. G., B. C. Parker, G. F. Prescott, et al., 1979. The Algae of Southern Victoria Land. A Taxonomic and Distributional Study. J. Cramer Publishers, Stuttgart: 168pp.

    Google Scholar 

  • Segawa, T., T. Yonezawa, A. Edwards, et al., 2017. Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers. Journal of Biogeography 4: 2849–2861.

    Google Scholar 

  • Singh, S. M. & J. Elster, 2007. Cyanobacteria in Antarctic lake environments. In Seckbach, J. (ed.), Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht: 303–320.

    Google Scholar 

  • Singh, S., B. N. Kate & U. C. Banerjee, 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology 25: 73–95.

    CAS  PubMed  Google Scholar 

  • Singh, S. M., P. Singh & N. Thajuddin, 2008. Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica. Acta Botanica Malacitana 33: 17–28.

    Google Scholar 

  • Sohm, J. A., T. D. Niederberger, A. E. Parker et al., 2020. Microbial mats of the McMurdo Dry Valleys, Antarctica: oases of biological activity in a very cold desert. Frontiers in Microbiology 11: Art. 537960.

  • Sommers, P., D. L. Porazinska, F. J. Zamora, et al., 2019. Experimental cryoconite holes as mesocosms for studying community ecology. Polar Biology 42: 1973.

    Google Scholar 

  • Spathatis, S., V. Lamprinou, A. Meziti, et al., 2019. Everything is not everywhere: can marine compartments shape phytoplankton assemblages. The Royal Society Publishers 286: 1914.

    Google Scholar 

  • Stahl, D. A., J. J. Flowers, M. Hullar, et al., 2013. Structure and function of microbial communities. In Rosenberg, E., E. F. DeLong & S. Lory (eds), The Prokaryotes, Vol. I, 4th ed. Springer, Berlin: 3–30.

    Google Scholar 

  • Stal, L. J., 2012. Cyanobacterial mats and stromatolites. In Whitton, B. (ed.), Ecology of Cyanobacteria, II. Springer, Dordrecht: 65–125.

    Google Scholar 

  • Stanish, L. F., D. R. Nemergut & D. M. McKnight, 2011. Hydrologic processes influence diatom community composition in Dry Valley streams. Journal of the North American Benthological Society 30: 1057–1073.

    Google Scholar 

  • Stibal, M., M. Sabacká & K. Kastovská, 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology 52: 644–654.

    PubMed  Google Scholar 

  • Strunecký, O., J. Komárek & J. Elster, 2010. Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biology 33: 1419–1428.

    Google Scholar 

  • Strunecký, O., J. Komárek & J. Elster, 2012. Biogeography of Phormidium autumnale (Oscillatoriales, Cyanobacteria) in western and central Spitsbergen. Polish Polar Research 33: 369–382.

    Google Scholar 

  • Strunecký, O., J. Komárek, J. Johansen, et al., 2013. Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). Journal of Phycology 49: 1167–1180.

    PubMed  Google Scholar 

  • Strunecký, O., M. Bohunická, J. R. Johansen, et al., 2017. A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov. (Oscillatoriophycidae, Cyanobacteria). Fottea 17: 114–126.

    Google Scholar 

  • Suman, D., B. B. Aranya & C.-F. Julian, 2010. Microbial mats in Antarctica as models for the search of life on the Jovian moon Europa. In Seckbach, J. & A. Oren (eds), Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems, Vol. 14. Springer, Dordrecht: 543–561.

    Google Scholar 

  • Sumner, D. Y., A. D. Jungblut, I. Hawes, et al., 2016. Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica. Geobiology 4: 556–574.

    Google Scholar 

  • Tanabe, Y., S. Ohtan, N. Kasamatsu, et al., 2010. Photophysiological responses of phytobenthic communities to the strong light and UV in Antarctic shallow lakes. Polar Biology 33: 85–100.

    Google Scholar 

  • Tang, E. P. Y., R. Tremblay & W. F. Vincent, 1997. Cyanobacterial dominance of Polar freshwater ecosystems: are high latitude-mat-formers adapted to low temperature? Journal of Phycology 33: 171–181.

    Google Scholar 

  • Taton, A., S. Grubisic, E. Brambilla, et al., 2003. Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology 69: 5157–5169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taton, A., S. Grubisic, D. Ertz, et al., 2006. Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology 42: 1257–1270.

    CAS  Google Scholar 

  • Taton, A., A. Wilmotte, J. Šmarda, et al., 2011. Plectonema hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes. Polar Biology 34: 181–191.

    Google Scholar 

  • Tell, G., A. Vinocur & I. Izaguirre, 1995. Cyanophyta of lakes and ponds of Hope Bay, Antarctic Peninsula. Polar Biology 15: 503–509.

    Google Scholar 

  • Thompson, G., 1989. Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species list. South African Journal of Antarctic Research 19: 10–20.

    Google Scholar 

  • Tindall, B. J., R. Rosselló-Móra, H.-J. Busse, et al., 2010. Notes on the characterization of prokaryote strains for taxonomic purpose. International Journal of Systematic and Evolutionary Microbiology 60: 249–266.

    CAS  PubMed  Google Scholar 

  • Van Horn, D. J., C. R. Wolf, D. R. Colman, et al., 2016. Patterns of bacterial biodiversity in the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. FEMS Microbology Ecology 92: fiw148.

    Google Scholar 

  • Varin, T., C. Lovejoy, A. D. Jungblut, et al., 2012. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Applied and Environmental Microbiology 78: 549–559.

    PubMed  PubMed Central  Google Scholar 

  • Vincent, W. F., 2000. Cyanobacterial dominance in the Polar Regions. In Whitton, B. A. & M. Potts (eds), The Ecology of Cyanobacteria: their Diversity in Time and Space. Springer, Dordrecht: 321–340.

    Google Scholar 

  • Vincent, W. F., 2007. Cold tolerance in cyanobacteria and life in the cryosphere. In Seckbach, J. (ed.), Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht: 287–301.

    Google Scholar 

  • Vincent, W. F. & M. R. James, 1996. Diversity in extreme aquatic environments: lakes, ponds and streans in the Ross Sea sector, Antarctica. Biodiversity and Conservation 5: 1451–1471.

    Google Scholar 

  • Vincent, W. F. & A. Quesada, 2012a. Cyanobacteria in high latitude lakes, rivers and seas. In Whitton, B. A. & M. Potts (eds), Ecology of Cyanobacteria II. Springer, Dordrecht: 371–385.

    Google Scholar 

  • Vincent, W. V. & A. Quesada, 2012b. Cyanobacteria in the cryospere: snow, ice and extreme cold. In Whitton, B. A. & M. Potts (eds), Ecology of Cyanobacteria II. Springer, Dordrecht: 387–399.

    Google Scholar 

  • Vincent, W. F., M. T. Downes, R. W. Castenholz, et al., 1993. Community structure and pigment organization of cyanobacteria-dominated mats in Antarctica. European Journal of Phycology 28: 213–221.

    Google Scholar 

  • Wilkins, D., E. van Sebille, S.R. Rintoul, et al., 2013. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nature Communications 4: 2457.

    PubMed  Google Scholar 

  • Wei, S. T., M. A. Fernandez-Martinez, Y. Chan, et al., 2015. Diverse metabolic and stress-tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology 38: 433–443.

    Google Scholar 

  • Wei, S. T. S., D. Lacap-Bugler, M. C. Y. Lau, et al., 2016. Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Frontiers in Microbiology 7: 1642.

    PubMed  PubMed Central  Google Scholar 

  • Weisleitner, K., A. Perras, C. Moissl-Eichinger, et al., 2019. Source environments of the microbiome in perennially ice-covered lake Untersee, Antarctica. Frontiers in Microbiology 10: 1019.

    PubMed  PubMed Central  Google Scholar 

  • Weisleitner, K., A. K. Perras, S. Hubert, et al., 2020. Cryoconite hole location in East-Antarctic Untersee Oasis shapes physical and biological diversity. Frontiers in Microbiology 11: 1165.

    PubMed  PubMed Central  Google Scholar 

  • West, W. & G. S. West, 1911. Part VII. Freshwater algae. In British Antarctic Expedition 1907-09 under the Command of E.H. Shakleton, c.v.d. Reports of Scientific Investigations (J. Murray, ed.), Vol. I Biology, Part VII. Freshwater Algae. W. Heinemann, London: 263–298.

  • Wharton, R. A., B. C. Parker & G. M. Simmons, 1983. Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia 22: 355–365.

    Google Scholar 

  • Wharton, R. A., C. P. McKay, G. D. Clow, et al., 1993. Perrenial ice covers and their influence on Antarctic lake ecosystems. Anartctic Research Series ATSA 4: 53–70.

    Google Scholar 

  • Whitaker, R. J., D. W. Grogan & J. W. Taylor, 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 15: 976–978.

    Google Scholar 

  • Wood, S. A., D. Mountfort, A. I. Selwood, et al., 2008. Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Applied and Environmental Microbiology 74: 7243–7251.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn-Williams, D. D., H. G. M. Edwards & F. Garcia-Pichel, 1999. Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. European Journal of Phycology 34: 381–391.

    Google Scholar 

  • Zakhia, F., A. Jungblut, A. Taton, et al., 2008. Cyanobacteria in cold ecosystems. In Margesin, R., F. Schinner, J.-C. Marx & C. Gerday (eds), Psychrophiles: From Biodiversity to Biotechnology. Springer, Berlin: 121–132.

    Google Scholar 

  • Zhang, L., A. D. Jungblut, I. Hawes, et al., 2015. Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biology 38: 1097–1110.

    Google Scholar 

  • Zhu, L., A. Zancarini, I. Louati, et al., 2016. Bacterial communities associated with four cyanobacterial genera display structural and functional differences: evidence from an experimental approach. Frontiers in Microbiology 7: 1662.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Prof. Dale T. Andersen is gratefully acknowledged for including of one of the authors (SS) in Lake Untersee expeditions supported by Chicago Tawani Foundation and NASA Exobiology and Astrobiology Programs. Participation of SS in ‘Antarctica Study and Research’ expeditions of Arctic and Antarctic Research Institute (AARI) under Russian Federation Target Program ‘World Ocean’ is also acknowledged. The staff and wintering team members of Russian Antarctic Expedition-62, -64 and -65 are gratefully acknowledged for sampling assistance. We also thank the staff of the St. Petersburg University Research Centers ‘Cultivation of Microorganisms’ (http://researchpark.spbu.ru/collection-ccem-rus/1628-ccem-kollekciya-calu-rus), ‘Molecular and Cell Technologies’, and ‘Chromas’ for strain maintenance and analyses. We especially thank anonymous reviewers who helped to improve the manuscript regarding the consistency, informational completeness, and readability.

Funding

The work was partially financed by Russian Foundation for Fundamental Research project No. 20-04-00020.

Author information

Authors and Affiliations

Authors

Contributions

NV compiled the data in Table 1 and wrote the first draft of the article, SS collected and photographed environmental samples. SA and NV cultured and identified cyanobacteria. AP designed the review, directed the authors’ contributions and wrote MS and Revisions approved by other authors.

Corresponding author

Correspondence to Alexander Pinevich.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velichko, N., Smirnova, S., Averina, S. et al. A survey of Antarctic cyanobacteria. Hydrobiologia 848, 2627–2652 (2021). https://doi.org/10.1007/s10750-021-04588-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04588-9

Keywords

Navigation