Skip to main content
Log in

Adsorption Characteristics and Thermodynamic Analysis of CH4 and CO2 on Continental and Marine Shale

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

To better understand the CO2 sequestration and enhanced shale gas recovery, it is of great significance to study the adsorption characteristics of CO2 and CH4 in different types of shale. In this study, the mineral composition, pore structure and CH4 and CO2 adsorption isothermals of marine and continental shale samples were determined, an adsorption model was proposed to describe the adsorption behaviors of CH4 and CO2, the thermodynamics parameter of adsorption was obtained, and then the influence of mineral composition and pore structure on the adsorption characteristics of CH4 and CO2 in shale was clarified. The results showed that the total organic carbon content (TOC), the specific surface area (SSA) and micropore volume of marine shale samples are larger than those of continental shale samples. Shale has a higher TOC and clay minerals contents corresponding to a higher adsorption capacity. Under the same conditions, the CO2 adsorption capacity of shale is significantly higher than that of CH4. The proposed adsorption model considered the different adsorption mechanisms in different pores and the temperature effect, which can well describe the CH4 and CO2 adsorption behaviors of shale in various temperatures. Based on the adsorption model, considering the real gas conditions, the variation of the calculated isosteric heat (ΔH) and entropy (ΔS) of CH4 and CO2 adsorption with the increasing adsorption amount experienced three stages: slow decline, rapid decline, and gradual flattening. For a certain adsorption amount, the ΔH and ΔS of CO2 adsorption in shale are higher than those of CH4, and with the increase in temperature, the ΔH and ΔS show a downward trend. Combining the proposed adsorption model with ideal adsorbed solution theory, the predicted selectivity factor (\(\alpha_{{{\text{CO}}_{{2}} /{\text{CH}}_{{4}} }}\)) of CO2 over CH4 of all shale samples at the CH4 and CO2 mixed gas environment is greater than 1. Shale has a lower TOC corresponding to a higher \(\alpha_{{{\text{CO}}_{{2}} /{\text{CH}}_{{4}} }}\), and thus the \(\alpha_{{{\text{CO}}_{{2}} /{\text{CH}}_{{4}} }}\) of continental shale samples is higher than that of marine shale samples. The \(\alpha_{{{\text{CO}}_{{2}} /{\text{CH}}_{{4}} }}\) increased with the increase in fugacity and CO2 mole fraction, while decreased with the increase in temperature, and the variation of \(\alpha_{{{\text{CO}}_{{2}} /{\text{CH}}_{{4}} }}\) can be well explained by thermodynamics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bi, H., Jiang, Z., Li, J., Xiong, F., Li, P., Chen, L.: Ono-Kondo model for supercritical shale gas storage: a case study of Silurian Longmaxi shale in southeast Chongqing, China. Energy Fuels 31(3), 2755–2764 (2017)

    Article  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)

    Article  Google Scholar 

  • Brunauer, S., Deming, L.S., Deming, W.E., Teller, E.: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940)

    Article  Google Scholar 

  • Cochran, T.W., Danner, R.P., Kabel, R.L.: Vacancy solution theory of adsorption using flory-huggins activity coefficient equations. AIChE J. 31(2), 268–277 (1985)

    Article  Google Scholar 

  • Curtis, J.B.: Fractured shale-gas systems. AAPG Bull 86(11), 1921–1938 (2002)

    Google Scholar 

  • Dai, J., Zou, C., Dong, D., Ni, Y., Wu, W., Gong, D., Liu, D.: Geochemical characteristics of marine and terrestrial shale gas in China. Mar. Pet. Geol. 76, 444–463 (2016)

    Article  Google Scholar 

  • Dang, W., Zhang, J., Nie, H., Wang, F., Tang, X., Wu, N., Wang, R.: Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: Implications for understanding the nature of shale gas adsorption process. Chem. Eng. J. 383, 123191 (2020)

    Article  Google Scholar 

  • Deng, J., Kang, J., Zhou, F., Li, H., Zhang, D., Li, G.: The adsorption heat of methane on coal: comparison of theoretical and calorimetric heat and model of heat flow by microcalorimeter. Fuel 237, 81–90 (2019)

    Article  Google Scholar 

  • Du, X., Gu, M., Liu, Z., Zhao, Y., Sun, F., Wu, T.: Enhanced shale gas recovery by the injections of CO2, N2, and CO2/N2 mixture gases. Energy Fuels 33(6), 5091–5101 (2019)

    Article  Google Scholar 

  • Du, X., Guang, W., Cheng, Y., Hou, Z., Liu, Z., Yin, H., Shu, C.: Thermodynamics analysis of the adsorption of CH4 and CO2 on montmorillonite. Appl. Clay Sci. 192, 105631 (2020)

    Article  Google Scholar 

  • Duan, S., Gu, M., Du, X.D., Xian, X.F.: Adsorption equilibrium of CO2 and CH4 and their mixture on Sichuan Basin Shale. Energy Fuels 30(3), 2248–2256 (2016)

    Article  Google Scholar 

  • Dubinin, M.M., Astakhov, V.A.: Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Russ. Chem. Bull. 20(1), 3–7 (1971)

    Article  Google Scholar 

  • Ettinger, I., Eremin, I., Zimakov, B., Yanovskaya, M.: Natural factors influencing coal sorption properties. I: Petrography and sorption properties. Fuel 45, 267–275 (1966)

    Google Scholar 

  • Gu, M., Xian, X., Duan, S., Du, X.: Influences of the composition and pore structure of a shale on its selective adsorption of CO2 over CH4. J. Nat. Gas Sci. Eng. 46, 296–306 (2017)

    Article  Google Scholar 

  • Gu, M., Zhang, B., Qi, Z.D., Liu, Z.J., Duan, S., Du, X.D., Xian, X.F.: Effects of pore structure of granular activated carbons on CH4 enrichment from CH4/N2 by vacuum pressure swing adsorption. Sep. Purif. Technol. 146, 213–218 (2015)

    Article  Google Scholar 

  • Heller, R., Zoback, M.: Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. J. Unconv. Oil Gas Resour. 8, 14–24 (2014)

    Article  Google Scholar 

  • Hou, Y.G., He, S., Yi, J.Z., Zhang, B.Q., Chen, X.H., Wang, Y., Cheng, C.Y.: Effect of pore structure on methane sorption potential of shales. Pet. Explor. Dev. 41(2), 272–281 (2014)

    Article  Google Scholar 

  • Huang, H., Li, R., Jiang, Z., Li, J., Chen, L.: Investigation of variation in shale gas adsorption capacity with burial depth: insights from the adsorption potential theory. J. Nat. Gas Sci. Eng. 73, 103043 (2020)

    Article  Google Scholar 

  • Ji, L., Zhang, T., Milliken, K.L., Qu, J., Zhang, X.: Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 27, 2533–2545 (2012)

    Article  Google Scholar 

  • Kast, W.: Principles of adsorption and adsorption processes. Chem. Eng. Process. 19(2), 118–118 (1985)

    Article  Google Scholar 

  • Keshavarz, A., Sakurovs, R., Grigore, M., Sayyafzadeh, M.: Effect of maceral composition and coal rank on gas diffusion in Australian coals. Int. J. Coal Geol. 173, 65–75 (2017)

    Article  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  Google Scholar 

  • Li, A., Han, W., Fang, Q., Memon, A.: Ma, M: Experimental investigation of methane adsorption and desorption in water-bearing shale. Capillarity 3(3), 45–55 (2020)

    Article  Google Scholar 

  • Li, B., Yang, K., Ren, C., Li, J.: An adsorption-permeability model of coal with slippage effect under stress and temperature coupling condition. J. Nat. Gas Sci. Eng. 71, 102983 (2019)

    Article  Google Scholar 

  • Li, J., Zhou, S., Gaus, G., Li, Y., Ma, Y., Chen, K., Zhang, Y.: Characterization of methane adsorption on shale and isolated kerogen from the Sichuan Basin under pressure up to 60 MPa: Experimental results and geological implications. Int. J. Coal Geol. 189, 83–93 (2018)

    Article  Google Scholar 

  • Li, J.J., Yan, X.T., Wang, W.M., Zhang, Y.N., Yin, J.X., Lu, S.F., Chen, F.W., Meng, Y.L., Zhang, X.W., Chen, X., Yan, Y.X., Zhu, J.X.: Key factors controlling the gas adsorption capacity of shale: a study based on parallel experiments. Appl. Geochem 58, 88–96 (2015)

    Article  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AICHE J. 11(1), 121–127 (1965)

    Article  Google Scholar 

  • Nuttall, B.C., Eble, C.F., Drahovzal, J.A., Bustin, R.M.: Analysis of Devonian black shales in Kentucky for potential carbon dioxide sequestration and enhanced natural gas production, DE-FC26-02NT41442. Kentucky Geological Survey, Lexington, KY (2005)

    Google Scholar 

  • Ortiz, O.P., Peredo, D., Pozo, M., Pérez, E., Bessieres, D.: Effect of organic matter and thermal maturity on methane adsorption capacity on shales from the middle magdalena valley basin in Colombia. Energy Fuels 31(11), 11698–11709 (2017)

    Article  Google Scholar 

  • Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976)

    Article  Google Scholar 

  • Qi, R., Ning, Z., Wang, Q., Zeng, Y., Huang, L., Zhang, S., Du, H.: Sorption of methane, carbon dioxide, and their mixtures on shales from Sichuan Basin, China. Energy Fuels 32(3), 2926–2940 (2018)

    Article  Google Scholar 

  • Ridha, F.N., Webley, P.A.: Entropic effects and isosteric heats of nitrogen and carbon dioxide adsorption on chabazite zeolites. Micropor. Mesopor. Mat. 132, 22–30 (2010)

    Article  Google Scholar 

  • Ross, D.J.K., Bustin, R.M.: The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 26, 916–927 (2009)

    Article  Google Scholar 

  • Sheng, M., Li, G.S., Chen, L.J., Shao, S.J., Zhang, R.: Mechanisms analysis of shalegas supercritical adsorption and modeling of isorption adsorption. J. China Coal Soc. 39(1), 179–183 (2014)

    Google Scholar 

  • Shi, J., Shen, G., Zhao, H., Sun, N., Song, X., Guo, Y., Sun, Y.: Porosity at the interface of organic matter and mineral components contribute significantly to gas adsorption on shales. J. CO2 Util. 28, 73–82 (2018)

    Article  Google Scholar 

  • Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)

    Article  Google Scholar 

  • Song, X., Lü, X., Shen, Y., Guo, S., Guan, Y.: A modified supercritical Dubinin–Radushkevich model for the accurate estimation of high pressure methane adsorption on shales. Int. J. Coal Geol. 193, 1–15 (2018)

    Article  Google Scholar 

  • Stadie, N.P., Murialdo, M., Ahn, C.C., Fultz, B.: Anomalous isosteric enthalpy of adsorption of methane on zeolite-templated carbon. J. Am. Chem. Soc. 135(3), 990–993 (2013)

    Article  Google Scholar 

  • Tang, X., Ripepi, N.: High pressure supercritical carbon dioxide adsorption in coal: adsorption model and thermodynamic characteristics. J. CO2 Util. 18, 189–197 (2017)

    Article  Google Scholar 

  • Tang, X., Ripepi, N., Stadie, N.P., Yu, L.: Thermodynamic analysis of high pressure methane adsorption in Longmaxi shale. Fuel 193, 411–418 (2017)

    Article  Google Scholar 

  • Tang, X., Ripepi, N., Rigby, S., Mokaya, R.: New perspectives on supercritical methane adsorption in shales and associated thermodynamics. J. Ind. Eng. Chem. 78, 186–197 (2019)

    Article  Google Scholar 

  • Tian, H., Li, T., Zhang, T., Xiao, X.: Characterization of methane adsorption on overmature Lower Silurian-Upper Ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications. Int. J. Coal Geol. 156, 36–49 (2016)

    Article  Google Scholar 

  • Wang, S., Song, Z., Cao, T., Song, X.: The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Mar. Pet. Geol. 44, 112–119 (2013)

    Article  Google Scholar 

  • Weniger, P., Kalkreuth, W., Busch, A.: High-pressure methane and carbon dioxide sorption on coal and shale samples from the Parana Basin, Brazil. Int. J. Coal Geol. 84(3–4), 190–205 (2010)

    Article  Google Scholar 

  • Yin, H., Zhou, J., Jiang, Y., Xian, X., Liu, Q.: Physical and structural changes in shale associated with supercritical CO2 exposure. Fuel 184, 289–303 (2016)

    Article  Google Scholar 

  • Zhang, T., Li, Y., Sun, S.: Phase equilibrium calculations in shale gas reservoirs. Capillarity 2(1), 8–16 (2019)

    Article  Google Scholar 

  • Zhou, J., Hu, N., Xian, X., Zhou, L., Tang, J., Kang, Y., Wang, H.: Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: results, status and future challenges. Adv. Geo-Energy Res. 3(2), 207–224 (2019)

    Article  Google Scholar 

  • Zhou, J., Yang, K., Tian, S., Zhou, L., Xian, X., Jiang, Y., Cai, J.: CO2-water-shale interaction induced shale microstructural alteration. Fuel 263, 116642 (2020a)

    Article  Google Scholar 

  • Zhou, J., Tian, S., Zhou, L., Xian, X., Yang, K., Jiang, Y., Guo, Y.: Experimental investigation on the influence of sub-and super-critical CO2 saturation time on the permeability of fractured shale. Energy 191, 116574 (2020b)

    Article  Google Scholar 

  • Zhou, L., Bai, S.P., Su, W., Yang, J.: Comparative study of the excess versus absolute adsorption of CO2 on super activated carbon for the near-critical region. Langmuir 19, 97–100 (2003)

    Article  Google Scholar 

  • Zhou, S., Ning, Y., Wang, H., Liu, H., Xue, H.: Investigation of methane adsorption mechanism on Longmaxi shale by combining the micropore filling and monolayer coverage theories. Adv. Geo-Energy Res. 2(3), 269–281 (2018a)

    Article  Google Scholar 

  • Zhou, S., Xue, H., Ning, Y., Guo, W.: Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 211, 140–148 (2018b)

    Article  Google Scholar 

  • Zhou, S., Yan, G., Xue, H., Guo, W., Li, X.: 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM. Mar. Pet. Geol. 73, 174–180 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (51774060, U19B2009), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R112) and the Basic Research and Frontier Exploration Projects in Chongqing (cstc2019jcyj- msxmX0053, cstc2019yszx-jcyjX0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Zhou, J., Xian, X. et al. Adsorption Characteristics and Thermodynamic Analysis of CH4 and CO2 on Continental and Marine Shale. Transp Porous Med 140, 763–788 (2021). https://doi.org/10.1007/s11242-021-01599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-021-01599-x

Keywords

Navigation