Skip to main content
Log in

Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: turning an X into a Y chromosome?

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Sex determination in mammals is usually provided by a pair of chromosomes, XX in females and XY in males. Mole voles of the genus Ellobius are exceptions to this rule. In Ellobius tancrei, both males and females have a pair of XX chromosomes that are indistinguishable from each other in somatic cells. Nevertheless, several studies on Ellobius have reported that the two X chromosomes may have a differential organization and behavior during male meiosis. It has not yet been demonstrated if these differences also appear in female meiosis. To test this hypothesis, we have performed a comparative study of chromosome synapsis, recombination, and histone modifications during male and female meiosis in E. tancrei. We observed that synapsis between the two X chromosomes is limited to the short distal (telomeric) regions of the chromosomes in males, leaving the central region completely unsynapsed. This uneven behavior of sex chromosomes during male meiosis is accompanied by structural modifications of one of the X chromosomes, whose axial element tends to appear fragmented, accumulates the heterochromatin mark H3K9me3, and is associated with a specific nuclear body that accumulates epigenetic marks and proteins such as SUMO-1 and centromeric proteins but excludes others such as H3K4me, ubiH2A, and γH2AX. Unexpectedly, sex chromosome synapsis is delayed in female meiosis, leaving the central region unsynapsed during early pachytene. This region accumulates γH2AX up to the stage in which synapsis is completed. However, there are no structural or epigenetic differences similar to those found in males in either of the two X chromosomes. Finally, we observed that recombination in the sex chromosomes is restricted in both sexes. In males, crossover-associated MLH1 foci are located exclusively in the distal regions, indicating incipient differentiation of one of the sex chromosomes into a neo-Y. Notably, in female meiosis, the central region of the X chromosome is also devoid of MLH1 foci, revealing a lack of recombination, possibly due to insufficient homology. Overall, these results reveal new clues about the origin and evolution of sex chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acquaviva L, Boekhout M, Karasu ME, Brick K, Pratto F, Li T, van Overbeek M, Kauppi L, Camerini-Otero RD, Jasin M, Keeney S (2020) Ensuring meiotic DNA break formation in the mouse pseudoautosomal region. Nature 582:426–431. https://doi.org/10.1038/s41586-020-2327-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson LK, Reeves A, Webb LM, Ashley T (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151:1569–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa Y, Nishida-Umehara C, Matsuda Y, Sutou S, Suzuki H (2002) X-chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat. Cytogenetic and Genome Research 99:303–309

    Article  CAS  PubMed  Google Scholar 

  • Ashley T, Jaarola M, Fredga K (1989) Absence of synapsis during pachynema of the normal sized sex chromosomes of Microtus arvalis. Hereditas 111:295–304

    Article  CAS  PubMed  Google Scholar 

  • Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JH, de Boer P, Grootegoed JA (2005) Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25:1041–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachtrog D (2006) A dynamic view of sex chromosome evolution. Curr Opin Genet Dev 16:578–585

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14:113–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachtrog D (2020) The Y chromosome as a battleground for intragenomic conflict. Trends Genet 36:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman T-L, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC, The Tree of Sex C (2014) Sex determination: why so many ways of doing it? PLoS Biol 12:e1001899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagheri-Fam S, Sreenivasan R, Bernard P, Knower K, Lovell-Badge R, Just W, Harley V (2012) Sox9 gene regulation and the loss of the XY/XX sex-determining mechanism in the mole vole Ellobius lutescens. Chromosom Res 20:191–199

    Article  CAS  Google Scholar 

  • Bakloushinskaya I, Matveevsky S (2018) Unusual ways to lose a Y chromosome and survive with changed autosomes: a story of mole voles Ellobius (Mammalia, Rodentia). OBM Genetics 2

  • Bakloushinskaya IY, Matveevsky SN, Romanenko SA, Serdukova NA, Kolomiets OL, Spangenberg VE, Lyapunova EA, Graphodatsky AS (2012) A comparative analysis of the mole vole sibling species Ellobius tancrei and E. talpinus (Cricetidae, Rodentia) through chromosome painting and examination of synaptonemal complex structures in hybrids. Cytogenet Genome Res 136:199–207

    Article  PubMed  Google Scholar 

  • Bakloushinskaya I, Lyapunova EA, Saidov AS, Romanenko SA, O'Brien PCM, Serdyukova NA, Ferguson-Smith MA, Matveevsky S, Bogdanov AS (2019) Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobius alaicus Vorontsov et al., 1969 (Mammalia, Rodentia). Comp Cytogenet 13:147–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG, Burgoyne PS, Jasin M, Keeney S (2005) Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol Cell Biol 25:7203–7215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, Koutseva N, Zaghlul S, Graves T, Rock S, Kremitzki C, Fulton RS, Dugan S, Ding Y, Morton D, Khan Z, Lewis L, Buhay C, Wang Q, Watt J, Holder M, Lee S, Nazareth L, Alfoldi J, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boekhout M, Karasu ME, Wang J, Acquaviva L, Pratto F, Brick K, Eng DY, Xu J, Camerini-Otero RD, Patel DJ, Keeney S (2019) REC114 partner ANKRD31 controls number, timing, and location of meiotic DNA breaks. Mol Cell 74:1053–1068.e1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borodin PM, Basheva EA, Torgasheva AA, Dashkevich OA, Golenishchev FN, Kartavtseva IV, Mekada K, Dumont BL (2012) Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosom Res 20:259–268

    Article  CAS  Google Scholar 

  • Britton-Davidian J, Robinson TJ, Veyrunes F (2012) Systematics and evolution of the African pygmy mice, subgenus Nannomys: A review. Acta Oecol 42:41–49

    Article  Google Scholar 

  • Burgoyne PS (1982) Genetic homology and crossing over in the X and Y chromosomes of mammals. Hum Genet 61:85–90

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10:207–216

    Article  CAS  PubMed  Google Scholar 

  • Calvente A, Viera A, Page J, Parra MT, Gomez R, Suja JA, Rufas JS, Santos JL (2005) DNA double-strand breaks and homology search: inferences from a species with incomplete pairing and synapsis. J Cell Sci 118:2957–2963

    Article  CAS  PubMed  Google Scholar 

  • Calvente A, Santos JL, Rufas JS (2016) Do exogenous DNA double-strand breaks change incomplete synapsis and chiasma localization in the grasshopper Stethophyma grossum? PLoS One 11:e0168499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carnero A, Jimenez R, Burgos M, Sanchez A, Diaz de la Guardia R (1991) Achiasmatic sex chromosomes in Pitymys duodecimcostatus: mechanisms of association and segregation. Cytogenet Cell Genet 56:78–81

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc Lond Ser B Biol Sci 355:1563–1572

    Article  CAS  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  CAS  PubMed  Google Scholar 

  • Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grutzner F, Kaessmann H (2014) Origins and functional evolution of Y chromosomes across mammals. Nature 508:488–493

    Article  CAS  PubMed  Google Scholar 

  • Costa Y, Speed R, Ollinger R, Alsheimer M, Semple CA, Gautier P, Maratou K, Novak I, Hoog C, Benavente R, Cooke HJ (2005) Two novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the centre of meiosis. J Cell Sci 118:2755–2762

    Article  CAS  PubMed  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36

    Article  CAS  PubMed  Google Scholar 

  • Daish TJ, Casey AE, Grutzner F (2015) Lack of sex chromosome specific meiotic silencing in platypus reveals origin of MSCI in therian mammals. BMC Biol 13:106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Fuente R, Parra MT, Viera A, Calvente A, Gomez R, Suja JA, Rufas JS, Page J (2007) Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genet 3:e198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Fuente R, Sanchez A, Marchal JA, Viera A, Parra MT, Rufas JS, Page J (2012) A synaptonemal complex-derived mechanism for meiotic segregation precedes the evolutionary loss of homology between sex chromosomes in arvicolid mammals. Chromosoma 121:433–446

    Article  PubMed  Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denys C, Kadjo B, Missoup AD, Monadjem A, Aniskine V (2013) New records of bats (Mammalia: Chiroptera) and karyotypes from Guinean Mount Nimba (West Africa). Ital J Zool 80:279–290

    Article  Google Scholar 

  • Fredga K, Bulmer MG (1988) Aberrant chromosomal Sex-determining mechanisms in mammals, with special reference to species with XY females [and discussion]. Philosophical Transactions of the Royal Society of London B, Biological Sciences 322:83–95

    Article  CAS  PubMed  Google Scholar 

  • Froenicke L, Anderson LK, Wienberg J, Ashley T (2002) Male mouse recombination maps for each autosome identified by chromosome painting. Am J Hum Genet 71:1353–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Fernández A, Saunders PA, Martín-Ruiz M, Ribagorda M, López-Jiménez P, Jeffries DL, Parra MT, Viera A, Rufas JS, Perrin N, Veyrunes F, Page J (2020) Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet 16:e1008959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goetz P, Chandley AC, Speed RM (1984) Morphological and temporal sequence of meiotic prophase development at puberty in the male mouse. J Cell Sci 65:249–263

    Article  CAS  PubMed  Google Scholar 

  • Graves JA (1995) The origin and function of the mammalian Y chromosome and Y-borne genes--an evolving understanding. Bioessays 17:311–320

    Article  CAS  PubMed  Google Scholar 

  • Graves JA (1996) Mammals that break the rules: genetics of marsupials and monotremes. Annu Rev Genet 30:233–260

    Article  CAS  PubMed  Google Scholar 

  • Graves JAM (2004) The degenerate Y chromosome can conversion save it? Reprod Fertil Dev 16:527–534

    Article  PubMed  Google Scholar 

  • Graves JAM (2006) Sex chromosome specialization and degeneration in mammals. Cell 124:901–914

    Article  PubMed  CAS  Google Scholar 

  • Graves JA, Wakefield MJ, Toder R (1998) The origin and evolution of the pseudoautosomal regions of human sex chromosomes. Hum Mol Genet 7:1991–1996

    Article  CAS  PubMed  Google Scholar 

  • Griffin D (2012) Is the Y chromosome disappearing?—Both sides of the argument. Chromosom Res 20:35–45

    Article  CAS  Google Scholar 

  • Guioli S, Lovell-Badge R, Turner JMA (2012) Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line. PLoS Genet 8:e1002560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda T, Suzuki H, Itoh M (1977) An unusual sex chromosome constitution found in the Amami spinous country-rat, Tokudaia osimensis osimensis. The Japanese journal of genetics 52:247–249

    Article  Google Scholar 

  • Honda T, Suzuki H, Itoh M, Hayashi K (1978) Karyotypical differences of the Amami spinous country-rats, Tokudaia osimensis osimensis, obtained from two neighbouring islands. The Japanese journal of genetics 53:297–299

    Article  Google Scholar 

  • Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Graves T, Fulton RS, Dugan S, Ding Y, Buhay CJ, Kremitzki C, Wang Q, Shen H, Holder M, Villasana D, Nazareth LV, Cree A, Courtney L, Veizer J, Kotkiewicz H, Cho T-J, Koutseva N, Rozen S, Muzny DM, Warren WC, Gibbs RA, Wilson RK, Page DC (2012) Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 483:82–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffries DL, Lavanchy G, Sermier R, Sredl MJ, Miura I, Borzée A, Barrow LN, Canestrelli D, Crochet P-A, Dufresnes C, Fu J, Ma W-J, Garcia CM, Ghali K, Nicieza AG, O’Donnell RP, Rodrigues N, Romano A, Martínez-Solano Í, Stepanyan I, Zumbach S, Brelsford A, Perrin N (2018) A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat Commun 9:4088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Just W, Rau W, Vogel W, Akhverdian M, Fredga K, Marshall Graves JA, Lyapunova E (1995) Absence of Sry in species of the vole Ellobius. Nat Genet 11:117–118

    Article  CAS  PubMed  Google Scholar 

  • Kauppi L, Barchi M, Baudat F, Romanienko PJ, Keeney S, Jasin M (2011) Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 331:916–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauppi L, Jasin M, Keeney S (2012) The tricky path to recombining X and Y chromosomes in meiosis. Ann N Y Acad Sci 1267:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeney S, Lange J, Mohibullah N (2014) Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 48:187–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD (2004) The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet 36:642–646

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Yamada F, Hashimoto T, Abe S, Matsuda Y, Kuroiwa A (2007) Exceptional minute sex-specific region in the X0 mammal, Ryukyu spiny rat. Chromosom Res 15:175–187

    Article  CAS  Google Scholar 

  • Kolomiets OL, Vorontsov NN, Lyapunova EA, Mazurova TF (1991) Ultrastructure, meiotic behavior, and evolution of sex chromosomes of the genus Ellobius. Genetica 84:179–189

    Article  Google Scholar 

  • Kolomiets OL, Matveevsky SN, Bakloushinskaya IY (2010) Sexual dimorphism in prophase I of meiosis in the Northern mole vole (Ellobius talpinus Pallas, 1770) with isomorphic (XX) chromosomes in males and females. Comparative Cytogenetics 4:55–66

    Article  Google Scholar 

  • Kouznetsova A, Wang H, Bellani M, Camerini-Otero RD, Jessberger R, Hoog C (2009) BRCA1-mediated chromatin silencing is limited to oocytes with a small number of asynapsed chromosomes. J Cell Sci 122:2446–2452

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa A, Ishiguchi Y, Yamada F, Shintaro A, Matsuda Y (2010) The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat. Chromosoma 119:519–526

    Article  PubMed  Google Scholar 

  • Liu L, Franco S, Spyropoulos B, Moens PB, Blasco MA, Keefe DL (2004) Irregular telomeres impair meiotic synapsis and recombination in mice. Proc Natl Acad Sci U S A 101:6496–6501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyapunova EA, Vorontsov NN (1978) Genetics of Ellobius (Rodentia). I Karyological characteristics of four Ellobius species Genetika 14:2012–2024

    Google Scholar 

  • Lyapunova EA, Vorontsov NN, Zakarjan GG (1975) Zygotic mortality in Ellobius lutescens (Rodentia: Microtinae). Experientia 31:417–418

    Article  CAS  PubMed  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    Article  CAS  PubMed  Google Scholar 

  • Matthey R (1953) La formule chromosomique et le problème de la détermination sexuelle chez Ellobius lutescens Thomas (Rodentia-Muridae-Microtinae). Arch Klaus-Stift VererbForsch 28:65–73

    Google Scholar 

  • Matveevsky S, Bakloushinskaya I, Tambovtseva V, Romanenko S, Kolomiets O (2015) Analysis of meiotic chromosome structure and behavior in Robertsonian heterozygotes of Ellobius tancrei (Rodentia, Cricetidae): a case of monobrachial homology. Comp Cytogenet 9:691–706

    Article  PubMed  PubMed Central  Google Scholar 

  • Matveevsky S, Bakloushinskaya I, Kolomiets O (2016) Unique sex chromosome systems in Ellobius: how do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci Rep 6:29949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveevsky S, Kolomiets O, Bogdanov A, Hakhverdyan M, Bakloushinskaya I (2017) Chromosomal evolution in mole voles Ellobius (Cricetidae, Rodentia): bizarre sex chromosomes, variable autosomes and meiosis. Genes (Basel) 8:306

  • Matveevsky S, Ivanitskaya E, Spangenberg V, Bakloushinskaya I, Kolomiets O (2018) Reorganization of the Y chromosomes enhances divergence in Israeli mole rats Nannospalax ehrenbergi (Spalacidae, Rodentia): comparative analysis of meiotic and mitotic chromosomes. Genes (Basel) 9:272

  • Matveevsky S, Tretiakov A, Kashintsova A, Bakloushinskaya I, Kolomiets O (2020) Meiotic nuclear architecture in distinct mole vole hybrids with Robertsonian translocations: chromosome chains, stretched centromeres, and distorted recombination. Int J Mol Sci 21(20):7630

  • McKee BD, Handel MA (1993) Sex chromosomes, recombination, and chromatin conformation. Chromosoma 102:71–80

    Article  CAS  PubMed  Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    Article  CAS  PubMed  Google Scholar 

  • Moses MJ, Poorman PA, Roderick TH, Davisson MT (1982) Synaptonemal complex analysis of mouse chromosomal rearrangements. IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma 84:457–474

    Article  CAS  PubMed  Google Scholar 

  • Mulugeta E, Wassenaar E, Sleddens-Linkels E, WFJ v IJ, Heard E, Grootegoed JA, Just W, Gribnau J, Baarends WM (2016) Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes. Genome Res 26:1202–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata C, Kuroki Y, Imoto I, Tsukahara M, Ikejiri N, Kuroiwa A (2015) Initiation of recombination suppression and PAR formation during the early stages of neo-sex chromosome differentiation in the Okinawa spiny rat, Tokudaia muenninki. BMC Evol Biol 15:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murdoch B, Owen N, Stevense M, Smith H, Nagaoka S, Hassold T, McKay M, Xu H, Fu J, Revenkova E, Jessberger R, Hunt P (2013) Altered cohesin gene dosage affects mammalian meiotic chromosome structure and behavior. PLoS Genet 9:e1003241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro J, Vidal F, Guitart M, Egozcue J (1981) A method for the sequential study of synaptonemal complexes by light and electron microscopy. Hum Genet 59:419–421

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex linked genes. Springer, Berlin

  • Page J, Berrios S, Rufas JS, Parra MT, Suja JA, Heyting C, Fernandez-Donoso R (2003) The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements. J Cell Sci 116:551–560

    Article  CAS  PubMed  Google Scholar 

  • Page J, Berrios S, Parra MT, Viera A, Suja JA, Prieto I, Barbero JL, Rufas JS, Fernandez-Donoso R (2005) The program of sex chromosome pairing in meiosis is highly conserved across marsupial species: implications for sex chromosome evolution. Genetics 170:793–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page J, de la Fuente R, Manterola M, Parra MT, Viera A, Berrios S, Fernandez-Donoso R, Rufas JS (2012) Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma 121:307–326

    Article  CAS  PubMed  Google Scholar 

  • Papanikos F, Clément JAJ, Testa E, Ravindranathan R, Grey C, Dereli I, Bondarieva A, Valerio-Cabrera S, Stanzione M, Schleiffer A, Jansa P, Lustyk D, Fei J-F, Adams IR, Forejt J, Barchi M, de Massy B, Toth A (2019) Mouse ANKRD31 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between X and Y sex chromosomes. Mol Cell 74:1069–1085.e1011

    Article  CAS  PubMed  Google Scholar 

  • Pennell MW, Mank JE, Peichel CL (2018) Transitions in sex determination and sex chromosomes across vertebrate species. Mol Ecol 27:3950–3963

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson RL, Nagorsen DW (1975) Chromosomes of fifteen species of bats (Chiroptera) from Kenya and Rhodesia. Royal Ontario Museum

  • Pigozzi MI (2016) The chromosomes of birds during meiosis. Cytogenetic and Genome Research 150:128–138

    Article  PubMed  CAS  Google Scholar 

  • Primus A, Harvey J, Guimondou S, Mboumba S, Ngangui R, Baker R, Porter C (2006) Karyology and chromosomal evolution of some small mammals inhabiting the rainforest of the Rabi oilfield, Gabon. In: Alonso A, Lee ME, Campbell P, Pauwels OSG, Dallmeier F (eds) Gamba Gabon: Biodiversity of an Equatorial African Rainforest. Bulletin of the Biological Society of Washington 371-382

  • Robinson TJ, Cernohorska H, Kubickova S, Vozdova M, Musilova P, Ruiz-Herrera A (2021) Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane's rule. Sci Rep 11:3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanenko SA, Sitnikova NA, Serdukova NA, Perelman PL, Rubtsova NV, Bakloushinskaya IY, Lyapunova EA, Just W, Ferguson-Smith MA, Yang F, Graphodatsky AS (2007) Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosom Res 15:891–897

    Article  CAS  Google Scholar 

  • Romanenko SA, Fedorova YE, Serdyukova NA, Zaccaroni M, Stanyon R, Graphodatsky AS (2020) Evolutionary rearrangements of X chromosomes in voles (Arvicolinae, Rodentia). Sci Rep 10:13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, de Rooij DG, Burgoyne PS, Turner JM (2010) Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol 20:2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Schimenti J (2005) Synapsis or silence. Nat Genet 37:11–13

    Article  CAS  PubMed  Google Scholar 

  • Sharp P (1982) Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86:27–47

    Article  CAS  PubMed  Google Scholar 

  • Solari AJ (1970) The spatial relationship of the X and Y chromosomes during meiotic prophase in mouse spermatocytes. Chromosoma 29:217–236

    Article  CAS  PubMed  Google Scholar 

  • Solari AJ (1974) The behavior of the XY pair in mammals. Int Rev Cytol 38:273–317

    Article  CAS  PubMed  Google Scholar 

  • Solari AJ (1993) Sex chromosomes and sex determination in vertebrates. CRC Press, Boca Raton

  • Sung WK, Komatsu M, Jagiello G (1983) A method for obtaining synaptonemal complexes of human pachytene oocytes. Caryologia 36:315–324

    Article  Google Scholar 

  • Turner JM, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli GV, Barrett JC, Burgoyne PS, Deng CX (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14:2135–2142

    Article  CAS  PubMed  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    Article  CAS  PubMed  Google Scholar 

  • Turner JM, Mahadevaiah SK, Ellis PJ, Mitchell MJ, Burgoyne PS (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10:521–529

    Article  CAS  PubMed  Google Scholar 

  • Viera A, Santos JL, Rufas JS (2009) Relationship between incomplete synapsis and chiasma localization. Chromosoma 118:377–389

    Article  CAS  PubMed  Google Scholar 

  • Vorontsov NN, Lyapunova EA, Borissov YM, Dovgal VE (1980) Variability of sex chromosomes in mammals. Genetica 52:361–372

    Google Scholar 

  • Waters PD, Ruiz-Herrera A (2020) Meiotic executioner genes protect the Y from extinction. Trends Genet 36:728–738

    Article  CAS  PubMed  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants CGL2014-53106-P from the Ministerio de Economía y Competitividad (Spain) and the Russian Foundation for Basic Research Nos. 20-34-70027 (SM), 20-04-00618 (IB), VIGG RAS State Assignment Contract No. 0112-2019-0002 and No. 0092-2019-0007 (SM, OK), and IDB RAS State Assignment for Basic Research No. 0088-2021-0019 (IB). AG-F was supported by a predoctoral fellowship from the Ministerio de Economía y Competitividad (Spain) and the European Social Fund (European Commission). We are grateful to GN Davidovich and AG Bogdanov of the Electron Microscopy Laboratory of the Biological Faculty of Moscow State University for technical assistance and Dr. C García de la Vega for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irina Bakloushinskaya or Jesús Page.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Figure 1.

a. Immunolocalization of SYPC3 (green) and centromeres (red) in a E. tancrei spermatocyte at pachytene. The X chromosomes (XX) are indicated. b. Arranged meiotic karyotype from the same spermatocyte. The XX chromosomes from a female oocyte (XX♀) are included for comparison with the male ones (XX♂). Bar represents 10 μm. (PNG 623 kb)

High resolution image (TIF 766 kb)

Supplementary Figure 2.

Immunolocalization of SYPC3 (green) and RNA polymerase-II (red) in E. tancrei spermatocytes. a. Early pachytene. RNA pol-II appears evenly distributed over the nucleus, except in the region where the sex chromosomes (XX) are located. This localization pattern is maintained through mid pachytene (b), late pachytene (c), and early diplotene (d). However, at late diplotene (e), RNA pol-II labeling extends to the sex chromosomes. By prometaphase-I (f), no RNA pol-II signal is detected. Bar represents 10 μm. (PNG 2773 kb)

High resolution image (TIF 2940 kb)

Supplementary Figure 3.

Immunolocalization of SYPC3 (red) and RPA (green) in E. tancrei spermatocytes. a. Leptotene. RPA appears as discrete foci distributed over the forming AEs. During early (b) and late zygotene (c), RPA is located mainly along the chromosomal regions that have completed synapsis. d. Early pachytene. RPA is still abundantly distributed along chromosomes. Sex chromosomes (XX) present RPA foci in both synapsed and unsynapsed regions. e. Mid pachytene. Only a few RPA foci are still present along the chromosomes, while a diffuse staining is covering the unsynapsed regions of sex chromosomes (XX). f. Late pachytene. RPA foci are not detectable. A faint diffuse staining covers sex chromosomes (XX). Bar represents 10 μm. (PNG 761 kb)

High resolution image (TIF 989 kb)

Supplementary Figure 4.

Immunolocalization of SYPC3 (red) and RAD51 (green) in E. tancrei spermatocytes. a. Leptotene. RPA appears as discrete foci distributed over the forming AEs. During early (b) and late zygotene (c), RAD51 is located along both synapsed and unsynapsed AEs. d. Early pachytene. Only a few RAD51 foci are present along the autosomes, but many foci are still visible over the sex chromosomes (XX). A diffuse staining covers the unsynapsed regions of these chromosomes. This diffuse staining and a few RAD51 foci are still detectable during mid (e) and late pachytene (f). Bar represents 10 μm. (PNG 725 kb)

High resolution image (TIF 968 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Fernández, A., Matveevsky, S., Martín-Ruiz, M. et al. Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: turning an X into a Y chromosome?. Chromosoma 130, 113–131 (2021). https://doi.org/10.1007/s00412-021-00755-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-021-00755-y

Keywords

Navigation