Skip to main content
Log in

Algebraic structures and position-dependent mass Schrödinger equation from group entropy theory

  • Original Paper
  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

A Publisher Correction to this article was published on 17 May 2021

This article has been updated

Abstract

Based on the group entropy theory, in this work, we generalize the algebra of real numbers (referred to as G-algebra) along with its associated calculus, thus obtaining the algebraic structures corresponding to the Tsallis and the \(\kappa \)-statistics. From a G-deformed translation operator, we obtain its associated Schrödinger equation, that corresponds to a particle with an effective position-dependent mass determined by the G-algebra. The q-deformed (standard) Schrödinger equation results in a special case for the Tsallis (Boltzmann–Gibbs) group class. We illustrate the results with the one-dimensional potential well for the \(\kappa \) and the Tsallis classes and we obtain a family of potentials associated with the group entropy classes by first principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Tsallis, C., Bukman, D.J.: Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E 54, R2197(R) (1996)

    ADS  Google Scholar 

  2. Ruppeiner, G.: Long-range interactions, doubling measures and Tsallis entropy. Eur. Phys. J. B 87, 56 (2014)

    MathSciNet  Google Scholar 

  3. Guo, S., Mei, L., Sun, A.: Nonlinear ion-acoustic structures in a nonextensive electron-positron-ion-dust plasma: modulational instability and rogue waves. Ann. Phys. 332, 38–55 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Aquilanti, V., Coutinho, N.D., Carvalho-Silva, V.H.: Kinetics of low-temperature transitions and a reaction rate theory from nonequilibrium distributions. Phil. Trans. R. Soc. A 375, 20160201 (2016)

    ADS  Google Scholar 

  5. Douglas, P., Bergamini, S., Renzoni, F.: Tunable tsallis distributions in dissipative optical lattices. Phys. Rev. Lett. 96, 110601 (2006)

    ADS  Google Scholar 

  6. Tirnakli, U., Borges, E.P.: The standard map: from Boltzmann-Gibbs statistics to Tsallis statistics. Sci. Rep. 6, 23644 (2016)

    ADS  Google Scholar 

  7. Gomez, I.S., Borges, E.P.: Unified time scales for quantum chaotic regimes. J. Stat. Mech. 2018, 063105 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Gomez, I.S.: A generalized vitali set from nonextensive statistics. Rep. Math. Phys. 83, 61–70 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics - Approaching a Complex World. Springer, New York (2009)

    MATH  Google Scholar 

  11. Abe, S.: A note on the \(q\)-deformation-theoretic aspect of the generalized entropies in nonextensive physics. Phys. Lett. A 224, 326–330 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Kaniadakis, G.: Non-linear kinetics underlying generalized statistics. Physica A 296, 405–425 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Kaniadakis, G.: Statistical mechanics in the context of special relativity. Phys. Rev. E 66, 056125 (2002)

    ADS  MathSciNet  Google Scholar 

  14. Kaniadakis, G.: Theoretical foundations and mathematical formalism of the power-law tailed statistical distributions. Entropy 15(10), 3983–4010 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Scarfone, A.M.: \(\kappa \)-deformed Fourier transform. Physica A 480, 63–78 (2017)

    ADS  MathSciNet  Google Scholar 

  16. Nivanen, L., Le Méhauté, A., Wang, Q.: Generalized algebra within a nonextensive statistics. Rep. Math. Phys. 52(3), 437–444 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Borges, E.P.: A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A 340(1–3), 95–101 (2004)

    ADS  MathSciNet  Google Scholar 

  18. Richstone, D.O., Potter, M.D.: Galactic mass loss: a mild evolutionary correction to the angular size test. Astrophys. J. 254, 451 (1982)

    ADS  Google Scholar 

  19. von Roos, O.: Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547 (1983)

    ADS  Google Scholar 

  20. Schulze-Halberg, A., García-Ravelo, J., Pacheco-García, C., Peña Gil, J.J.: A position-dependent mass model for the Thomas-Fermi potential: exact solvability and relation to \(\delta \)-doped semiconductors. Ann. Phys. 333, 323–334 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Khordad, R.: Effect of position-dependent effective mass on linear and nonlinear optical properties in a quantum dot. Indian J. Phys. 86, 513 (2012)

    ADS  Google Scholar 

  22. Li, K., Guo, K., Jiang, X., Hu, M.: Effect of position-dependent effective mass on nonlinear optical properties in a quantum well. Optik 132, 375 (2017)

    ADS  Google Scholar 

  23. Arias de Saavedra, F., Boronat, J., Polls, A., Fabrocini, A.: Effective mass of one \(^{3}\rm He \) atom in \(\rm liquid ^{4}\rm He \). Phys. Rev. B 50, 4248 (1994)

    ADS  Google Scholar 

  24. Barranco, M., Pi, M., Gatica, S.M., Hernández, E.S., Navarro, J.: Structure and energetics of mixed \({^4}\)He-\({^3}\)He drops Phys. Rev. B 56, 8997 (1997)

    Google Scholar 

  25. Aquino, N., Campoy, G., Yee-Madeira, H.: The inversion potential for \(\rm NH_3\) using a DFT approach. Chem. Phys. Lett. 296, 111 (1998)

    ADS  Google Scholar 

  26. Bethe, H.A.: Possible explanation of the solar neutrino puzzle. Phys. Rev. Lett. 56, 1305 (1986)

    ADS  Google Scholar 

  27. Bencheikh, K., Berkane, K., Bouizane, S.: The extended Thomas-Fermi kinetic energy density functional with position-dependent effective mass in one dimension. J. Phys. A: Math. Gen. 37(45), 10719 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Alhaidari, A.D.: Solution of the Dirac equation with position-dependent mass in the Coulomb field. Phys. Lett. A 322, 72 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Jia, C.S., Souza Dutra, A.: Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Ann. Phys. 323(3), 566 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Vitória, R.L.L., Furtado, C., Bakke, K.: On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein-Gordon oscillator and the Coulomb potential. Ann. Phys. 370, 128–136 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Tas, A., Aydogdu, O., Salti, M.: Dirac particles interacting with the improved Frost-Musulin potential within the effective mass formalism. Ann. Phys. 379, 67–82 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Rañada, M.F.: Superintegrable systems with a position dependent mass: Kepler-related and oscillator-related systems. Phys. Lett. A 380, 2204 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Bravo, R., Plyushchay, M.S.: Position-dependent mass, finite-gap systems, and supersymmetry. Phys. Rev. D 93, 105023 (2016)

    ADS  MathSciNet  Google Scholar 

  34. Quesne, C.: First-order intertwining operators and position-dependent mass Schrödinger equations in d dimensions. Ann. Phys. 321(5), 1221 (2006)

    ADS  MATH  Google Scholar 

  35. Quesne, C.: Infinite families of position-dependent mass Schrödinger equations with known ground and first excited states. Ann. Phys. 399, 270 (2018)

    ADS  MATH  Google Scholar 

  36. Quesne, C.: Quasi-exactly solvable extended trigonometric Pöschl-Teller potentials with position-dependent mass. Eur. Phys. J. Plus 134(8), 391 (2019)

    Google Scholar 

  37. Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. I. general interactions. Duke Math. J. 45(4), 847 (1978)

    MathSciNet  MATH  Google Scholar 

  38. Li, P., Yau, S.-T.: On the Schrödinger Equation and the Eigenvalue Problem. Commun. Math. Phys. 88, 309–313 (1983)

    ADS  MATH  Google Scholar 

  39. Röckner, M., Tu-Sheng, Z.: Uniqueness of generalized Schrödinger operators and applications. J. Funct. Anal. 105, 187–231 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Li, P., Wan, X., Zhang, C.: Schrödinger type operators on generalized Morrey spaces. J. Inequal. Appl. 2015, 229 (2015). https://doi.org/10.1186/s13660-015-0747-8

    Article  MATH  Google Scholar 

  41. Grigor’yan, A., Nadirashvili, N.: Negative eigenvalues of two-dimensional Schrödinger operators. Arch. Rational Mech. Anal. 217, 975–1028 (2015). https://doi.org/10.1007/s00205-015-0848-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Yafaev, D.R.: A note on the Schrödinger operator with a long-range potential. Lett. Math. Phys. 109, 2625–2648 (2019). https://doi.org/10.1007/s11005-019-01200-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Niikuni, H.: Existence of eigenvalues embedded in the spectral bands of Schrödinger operators on carbon nanotubes with impurities. Lett. Math. Phys. 110, 387–420 (2020). https://doi.org/10.1007/s11005-019-01220-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Behrndt J., Hassi S., De Snoo H. (2020) Schrödinger Operators on Bounded Domains. In: Boundary Value Problems, Weyl Functions, and Differential Operators. Monographs in Mathematics, vol 108. Birkhäuser, Chamy

  45. Costa Filho, R.N., Almeida, M.P., Farias, G.A., Andrade, J.S.: Displacement operator for quantum systems with position-dependent mass. Phys. Rev. A 84, 050102 (2011)

    ADS  Google Scholar 

  46. Costa Filho, R.N., Alencar, G., Skagerstam, B.-S., Andrade, J.S., Jr.: Morse potential derived from first principles. Europhys. Lett. 101, 10009 (2013)

    ADS  Google Scholar 

  47. da Costa, B.G., Borges, E.P.: Generalized space and linear momentum operators in quantum mechanics. J. Math. Phys. 55, 062105 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  48. da Costa, B.G., Borges, E.P.: A position-dependent mass harmonic oscillator and deformed space. J. Math. Phys. 59, 042101 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  49. da Costa, B.G., Gomez, I.S.: Bohmian formalism and Fisher information from \(q\)-deformed Schrodinger equation. Phys. Lett. A 382, 2605–2612 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  50. da Costa, B.G., Borges, E.P.: Nonlinear quantum mechanics in a \(q\)-deformed Hilbert space. Phys. Lett. A 383, 2729–2738 (2019)

    ADS  MathSciNet  Google Scholar 

  51. da Costa, B.G., Gomez, I.S., dos Santos, M.A.F.: Non-additive quantum mechanics for a position-dependent mass system: Dirac delta and quasi-periodic potentials. EPL 129, 10003 (2020)

    Google Scholar 

  52. Kullock, R., Latini, D.: Towards classical spectrum generating algebras for f-deformations. Phys. Lett. A 28, 327–332 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Hassanabadi, H., Sargolzaeipor, S., Chung, W.S.: Superstatistics properties of -deformed Morse potential in one dimension. Physica A 15, 740–747 (2018)

    ADS  MathSciNet  Google Scholar 

  54. Tempesta, P.: Group entropies, correlation laws, and zeta functions. Phys. Rev. E 84, 021121 (2011)

    ADS  Google Scholar 

  55. Tempesta, P.: A theorem on the existence of trace-form generalized entropies. Proc. R. Soc. A 471, 20150165 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Tempesta, P.: Groups, information theory, and Einstein’s likelihood principle. Phys. Rev. E 93, 040101(R) (2016)

    Google Scholar 

  57. Tempesta, P.: Formal groups and Z-entropies. Proc. R. Soc. A 472, 20160143 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Enciso, A., Tempesta, P.: Uniqueness and characterization theorems for generalized entropies. J. Stat. Mech. 367, 123101 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Rodriguez, M.A., Romaniega, A., Tempesta, P.: A new class of entropic information measures, formal group theory and information geometry. Proc. Royal Soc. A 475, 20180633 (2019)

    ADS  MathSciNet  Google Scholar 

  60. Tempesta, P., Jensen, J.H.: Universality classes and information-theoretic measures of complexity via group entropies. Sci. Rep. 10, 5952 (2020)

    ADS  Google Scholar 

  61. Bochner, S.: Formal Lie Groups. Ann. Math. 47, 192–201 (1946)

    MathSciNet  MATH  Google Scholar 

  62. Hazewinkel, M.: Formal Groups and Applications. Academic Press, New York, NY (1978)

    MATH  Google Scholar 

  63. Carrasco, J., Tempesta, P.: Formal Rings. arXiv:1902.03665, (2019)

  64. Lobão, T.C.P., Cardoso, P.G.S., Borges, E.P., Pinho, S.T.R.: Some properties of the q-numbers. Braz. J. Phys. 39, 402–407 (2009)

    ADS  Google Scholar 

  65. Cardoso, P.G.S., Borges, E.P., Lobão, T.C.P., Pinho, S.T.R.: Nondistributive algebraic structures derived from nonextensive statistical mechanics. J. Math. Phys. 49, 093509 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  66. de la Madrid, R.: The rigged Hilbert space of the algebra of the one-dimensional rectangular barrier potential. J. Phys. A: Math. Gen. 37, 8129 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

ISG and EPB acknowledge support received from the National Institute of Science and Technology for Complex Systems (INCT-SC) and from the National Council for Scientific and Technological Development (CNPq) (at Universidade Federal da Bahia), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Ignacio S. Gomez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, I.S., Borges, E.P. Algebraic structures and position-dependent mass Schrödinger equation from group entropy theory. Lett Math Phys 111, 43 (2021). https://doi.org/10.1007/s11005-021-01387-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01387-0

Keywords

Mathematics Subject Classification

Navigation