Skip to main content
Log in

Neuromodulatory effect of GnRH from coeliac ganglion on luteal regression in the late pregnant rat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The GnRH/GnRH receptor system has been found in several extrapituitary tissues, although its physiological significance has not yet been well established. Taking into account that the peripheral neural system can act as a modulator of pregnancy corpus luteum, the objective was to physiologically investigate the presence of the GnRH system in coeliac ganglion (CG) and to analyse its possible involvement in luteal regression through the superior ovarian nerve (SON) at the end of pregnancy in the rat. The integrated ex vivo CG-SON-Ovary system of rats on day 21 of pregnancy was used. Cetrorelix (CTX), a GnRH receptor antagonist, was added into the ganglionic compartment while the control systems were untreated. Ganglionic GnRH release was detected under basal conditions. Then, the CTX addition in CG increased it, which would indicate the blockade of the receptor. In turn, CTX in CG caused an increase in ovarian progesterone release. Furthermore, the luteal cells showed an increase in the expression of Hsd3b1 and a decrease in the expression of Akr1c3 (progesterone synthesis and degradation enzymes, respectively), reduced TUNEL staining according to an increase in the antioxidant defence system activity and low lipid peroxide levels. The ovarian and ganglionic nitric oxide (NO) release increased, while the luteal nitrotyrosine content, measured as nitrosative stress marker, decreased. CTX in CG decreased the ovarian noradrenaline release. The present study provides evidence that GnRH from CG may trigger neuronal signals that promote the luteal regression in late pregnancy by affecting the release of NO and noradrenaline in the ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguado LI, Ojeda SR (1984) Prepuberal ovarian function is finely regulated by direct adrenergic influences. Role of noradrenergic innervation. Endocrinology 114:1845–1853

    CAS  PubMed  Google Scholar 

  • Al-Gubory KH, Fowler PA, Garrel C (2010) The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 42:1634–1650

    Article  CAS  PubMed  Google Scholar 

  • Al-Gubory KH, Garrel C, Faure P, Sugino N (2012) Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online 25:551–560

    Article  CAS  PubMed  Google Scholar 

  • Barnes MJ, Lapanowski K, Rafols JA, Lawson DM, Dunbar JC (2001) GnRH and gonadotropin release is decreased in chronic nitric oxide deficiency. Exp Biol Med 226:701–706

    Article  CAS  Google Scholar 

  • Bradford MA (1976) A rapid and sensitive method for determination of microgram quatities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bronzi CD, Vega Orozco AS, Rodriguez D, Rastrilla AM, Sosa ZY, Casais M (2015) Noradrenaline modulates the presence of gonadotropin-releasing hormone in ovary. The importance of its interrelation on the ovarian steroidogenesis and apoptosis on dioestrus II in rat. J Steroid Biochem Mol Biol 154:39–46

    Article  CAS  PubMed  Google Scholar 

  • Casais M, Delgado SM, Sosa Z, Rastrilla AM (2006) Pregnancy in rats is modulated by ganglionic cholinergic action. Reproduction 131:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Casais M, Delgado SM, Vallcaneras S, Sosa Z, Rastrilla AM (2007) Nitric oxide in prepubertal rat ovary: contribution of the ganglionic nitric oxide synthase system via superior ovarian nerve. Neuro Endocrinol Lett 28:39–44

    CAS  PubMed  Google Scholar 

  • Casais M, Sosa ZY, Rastrilla AM, Aguado L (2001) Coeliac ganglion adrenergic activity modifies ovarian progesterone during pregnancy: its inter-relationship with LH. J Endocrinol 170:575–584

    Article  CAS  PubMed  Google Scholar 

  • Chachlaki K, Garthwaite J, Prevot V (2017) The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nature reviews. Endocrinology 13:521–535

    Article  CAS  PubMed  Google Scholar 

  • Cheung LWT, Wong AST (2008) Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 275:5479–5495

    Article  CAS  PubMed  Google Scholar 

  • Chun SY, Eisenhauer KM, Kubo M, Hsueh AJW (1995) Interleukin-1β suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 136:3120–3127

    Article  CAS  PubMed  Google Scholar 

  • Daneri C, Orozco AV, Bronzi D, Mohn C, Rastrilla AM, Sosa ZY (2013) Involvement of the ganglion cholinergic receptors in gonadotropin-releasing hormone, catecholamines, and progesterone release in the rat ovary. Fertil Steril 99:2062–2070

    Article  CAS  PubMed  Google Scholar 

  • Dineva JD, Vangelov IM, Nikolov GG, Konakchieva RT, Ivanova MD (2008) Nitric oxide stimulates the production of atrial natriuretic peptide and progesterone by human granulosa luteinized cells with an antiapoptotic effect. Endocr Regul 42:45–51

    CAS  PubMed  Google Scholar 

  • Fan J, Chen W, Guo X, Wang Z, Ming J, Guo Y, Xu Y (2013) Distribution of GnRH receptor in celiac-superior mesenteric ganglia of goat and its implications. Acta Veterinaria et Zootechnica Sinica 44:289–294

    CAS  Google Scholar 

  • Ford CP, Dryden WF, Smith PA (2003) Neurotrophic regulation of calcium channels by the peptide neurotransmitter luteinizing hormone releasing hormone. J Neurosci 23:7169–7175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford CP, Wong KV, Lu VB, Posse de Chaves E, Smith PA (2008) Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. J Neurophysiol 99:1319–1332

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Wu TW, Ni X (2016) Gas transmitters in female reproductive system. Sheng li xue bao 68:611–620

    PubMed  Google Scholar 

  • Ghersa F, Burdisso J, Vallcaneras SS, Fuentes F, de la Vega M, Delgado SM, Telleria CM, Casais M (2015) Neuromodulation of the luteal regression: presence of progesterone receptors in coeliac ganglion. Exp Physiol 100:935–946

    Article  CAS  PubMed  Google Scholar 

  • Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40:501–506

    Article  CAS  PubMed  Google Scholar 

  • Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. J Physiol 327:219–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauf C, Prevot V, Stefano GB, Mortreux G, Beauvillain JC, Croix D (2001) Evidence for a spontaneous nitric oxide release from the rat median eminence: influence on gonadotropin-releasing hormone release. Endocrinology 142:2343–2350

    Article  CAS  PubMed  Google Scholar 

  • Kuranaga E, Kanuka H, Hirabayashi K, Suzuki M, Nishihara M, Takahashi M (2000) Progesterone is a cell death suppressor that downregulates Fas expression in rat corpus luteum. FEBS Lett 466:279–282

    Article  CAS  PubMed  Google Scholar 

  • Maggi R, Cariboni AM, Marelli MM, Moretti RM, Andrè V, Marzagalli M, Limonta P (2016) GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum Reprod Update 22:358–381

    Article  CAS  PubMed  Google Scholar 

  • Masliukov PM, Emanuilov AI, Madalieva LV, Moiseev KY, Bulibin AV, Korzina MB, Porseva VV, Korobkin AA, Smirnova VP (2014) Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience 256:271–281

    Article  CAS  PubMed  Google Scholar 

  • McCann SM, Haens G, Mastronardi C, Walczewska A, Karanth S, Rettori V, Yu WH (2003) The role of nitric oxide (NO) in control of LHRH release that mediates gonadotropin release and sexual behavior. Curr Pharm Des 9:381–390

    Article  CAS  PubMed  Google Scholar 

  • Millar RP, King JA, Davidson JS, Milton RC (1987) Gonadotrophin-releasing hormone diversity of functions and clinical applications. S Afr Med J 72:748–755

    CAS  PubMed  Google Scholar 

  • Mitsube K (2002) Roles of nitric oxide (NO) on LH-induced ovulation and steroidogenesis in the in vitro perfused rat ovary and on the regulation of ovarian blood flow in vivo. Hokkaido journal of medical science 77:313–324

    CAS  PubMed  Google Scholar 

  • Morales MA, Holmberg K, Xu ZQ, Cozzari C, Hartman BK, Emson P, Goldstein M, Elfvin LG, Hökfelt T (1995) Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proc Natl Acad Sci USA 92:11819–11823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motta AB, Estevez A, de Gimeno MF (1999) The involvement of nitric oxide in corpus luteum regression in the rat: feedback mechanism between prostaglandin F(2alpha) and nitric oxide. Mol Hum Reprod 5:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Motta AB, Estevez A, Tognetti T, Gimeno MA, Franchi AM (2001) Dual effects of nitric oxide in functional and regressing rat corpus luteum. Mol Hum Reprod 7:43–47

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos V, Dharmarajan AM, Li H, Culty M, Lemay M, Sridaran R (1999) Mitochondrial peripheral-type benzodiazepine receptor expression. Correlation with gonadotropin-releasing hormone (GnRH) agonist-induced apoptosis in the corpus luteum. Biochem Pharmacol 58:1389–1393

    Article  CAS  PubMed  Google Scholar 

  • Park EJ, Shin JW, Seo YS, Kim DW, Hong SY, Park WI, Kang BM (2011) Gonadotropin-releasing hormone-agonist induces apoptosis of human granulosa-luteal cells via caspase-8, -9 and -3, and poly-(ADP-ribose)-polymerase cleavage. Biosci Trends 5:120–128

    Article  CAS  PubMed  Google Scholar 

  • Quinson N, Miolan JP, Niel JP (2000) Muscarinic receptor activation is a prerequisite for the endogenous release of nitric oxide modulating nicotinic transmission within the coeliac ganglion in the rabbit. Neuroscience 95:1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnappa N, Rajamahendran R, Lin YM, Leung PC (2005) GnRH in non-hypothalamic reproductive tissues. Anim Reprod Sci 88:95–113

    Article  CAS  PubMed  Google Scholar 

  • Ramírez Hernández DA, Vieyra Valdez E, Rosas Gavilán G, Linares Culebro R, Espinoza Moreno JA, Chaparro Ortega A, Domínguez Casalá R, Morales-Ledesma L (2020) Role of the superior ovarian nerve in the regulation of follicular development and steroidogenesis in the morning of diestrus 1. J Assist Reprod Genet 37:1477–1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Reissmann T, Schally AV, Bouchard P, Riethmiiller H, Engel J (2000) The LHRH antagonist cetrorelix: a review. Hum Reprod Update 6:322–331

    Article  CAS  PubMed  Google Scholar 

  • Rettori V, Belova N, Dees WL, Nyberg CL, Gimeno M, McCann SM (1993) Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc Natl Acad Sci USA 90:10130–10134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth C, Hegemann F, Hildebrandt J, Balzer I, Witt A, Wuttke W, Jarry H (2004) Pituitary and gonadal effects of GnRH (gonadotropin releasing hormone) analogues in two peripubertal female rat models. Pediatr Res 55:126–133

    Article  CAS  PubMed  Google Scholar 

  • Schirman-Hildesheim TD, Bar T, Ben-Aroya N, Koch Y (2005) Differential gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acid expression patterns in different tissues of the female rat across the estrous cycle. Endocrinology 146:3401–3408

    Article  CAS  PubMed  Google Scholar 

  • Selstam G, Norjavaara E, Rosberg S, Khan I, Hamberger B, Hamberger L (1987) Catecholamine content and adenylate cyclase activity in corpora lutea of different ages of the PMSG-treated immature rat. Mol Cell Endocrinol 53:155–160

    Article  CAS  PubMed  Google Scholar 

  • Sengupta A, Chakrabarti N, Sridaran R (2008) Presence of immunoreactive gonadotropin releasing hormone (GnRH) and its receptor (GnRHR) in rat ovary during pregnancy. Mol Reprod Dev 75:1031–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosa ZY, Casais M, Rastrilla AM, Aguado LI (2000) Adrenergic influences on the celiac ganglion affect the release of progesterone from cycling ovaries: characterization of an in vitro system. J Endocrinol 166:307–318

    Article  CAS  PubMed  Google Scholar 

  • Sridaran R, Philip GH, Li H, Culty M, Liu Z, Stocco DM, Papadopoulos V (1999) GnRH agonist treatment decreases progesterone synthesis, luteal peripheral benzodiazepine receptor mRNA, ligand binding and steroidogenic acute regulatory protein expression during pregnancy. J Mol Endocrinol 22:45–54

    Article  CAS  PubMed  Google Scholar 

  • Srivastava RK, Luu-The V, Marrone BL, Harris-Hooker S, Sridaran R (1994) Inhibition of steroidogenesis by luteal cells of early pregnancy in the rat in response to in vitro administration of a gonadotropin-releasing hormone agonist. J Steroid Biochem Mol Biol 49:73–79

    Article  CAS  PubMed  Google Scholar 

  • Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149

    Article  CAS  PubMed  Google Scholar 

  • Sugino N, Nakamura Y, Takeda O, Ishimatsu M, Kato H (1993) Changes in activities of superoxide dismutase and lipid peroxide in corpus luteum during pregnancy in rats. J Reprod Fertil 97:347–351

    Article  CAS  PubMed  Google Scholar 

  • Sugino N, Telleria CM, Gibori G (1997) Progesterone inhibits 20α-hydroxysteroid dehydrogenase expression in the rat corpus luteum through the glucocorticoid receptor. Endocrinology 138:4497–4500

    Article  CAS  PubMed  Google Scholar 

  • Takao Y, Fujiwara H, Yoshioka S, Fujii S, Ueda M (2008) Monoamine oxidase A is highly expressed by the human corpus luteum of pregnancy. Reproduction 136:367–375

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Huang Y, Zhang Z, Tang Y, Chen J, Sun F, Yang H, Wang Z (2017) Accumulated autophagosomes and excessive apoptosis during the luteal development of pregnant rats. Int J Clin Exp Pathol 10:11384–11392

    PubMed  PubMed Central  Google Scholar 

  • Telleria CM, Stocco CO, Stati AO, Deis RP (1999) Progesterone receptoris not required for progesterone action in the rat corpus luteum of pregnancy. Steroids 64:760–766

    Article  CAS  PubMed  Google Scholar 

  • Vallcaneras SS, Casais M, Delgado SM, Filippa V, Mohamed F, Sosa Z, Rastrilla AM (2009) Androgen receptors in coeliac ganglion in late pregnant rat. Steroids 74:526–534

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tang M, Jiang H, Wu B, Cai W, Hu C, Bao R, Dong Q, Xiao L, Gang L, Zhang C (2016) The role of adrenergic activation on murine luteal cell viability and progesterone production. Theriogenology 86:1182–1188

    Article  CAS  PubMed  Google Scholar 

  • Weiss GK, Dail WG, Ratner A (1982) Evidence for direct neural control of ovarian steroidogenesis in rats. J Reprod Fertil 65:507–511

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, Vitek M, Feelisch M, Grisham MB (2001) Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 3:203–213

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Bhat GK, Wadley R, Wright K, Chung BM, Whittaker JA, Dharmarajan AM, Sridaran R (2003) Gonadotropin-releasing hormone-agonist inhibits synthesis of nitric oxide and steroidogenesis by luteal cells in the pregnant rat. Biol Reprod 68:2222–2231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Dario Ramirez PhD for providing anti-nitrotyrosine and Gustavo Cramero, Director of Laboratorio de Análisis Clínicos (LAC, Tunuyán, Mendoza) for his advice in catecholamines determination. We also thank graphic designer Damian Garay for his assistance in the edition of the figure artwork. This work is part of the Doctoral Scholarship-CONICET and Doctoral thesis of Laura Morales.

Funding

This work was supported by Grant PROICO 2-2916-UNSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilina Casais.

Ethics declarations

Ethical approval

Animals were handled according to the procedures approved in the UFAW Handbook on the Care and Management of Laboratory Animals. The experimental protocol was approved by the University of San Luis Animal Care and Use Committee (number protocol: B-264/17).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, L., Vallcaneras, S., Delsouc, M.B. et al. Neuromodulatory effect of GnRH from coeliac ganglion on luteal regression in the late pregnant rat. Cell Tissue Res 384, 487–498 (2021). https://doi.org/10.1007/s00441-021-03436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03436-5

Keywords

Navigation