Skip to main content
Log in

Effect of polymer chains entanglements, crosslinks and finite extensibility on the nonlinear dynamic oscillations of dielectric viscoelastomer actuators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Soft materials exhibiting large deformation under external stimuli have gained an increasing attention in the recent past because of their potential applications in soft transducers aimed at achieving biomimetic actuation. This paper theoretically analyzes the effect of internal properties, including entanglements, crosslinks and finite extensibility of polymer chains along with inherent viscoelastic properties of polymers on the performance of Dielectric Elastomer actuator (DEA) in dynamic modes of actuation. A physics based nonaffine material model proposed by Davidson and Goulbourne is used to model the polymer chains entanglements, crosslinks and finite extensibility. To incorprate the viscoelastic properties, a rheological material model based on the additive decomposition of the isotropic strain energy density into equilibrium and viscous parts is implemented. A computationally efficient method, which relies on the principle of least action is used for extracting the governing equation representing the dynamic motion of the DE actuator. The results demonstrate that DEAs with strong entanglements and crosslinks along with small finite extensibility of polymer chains exhibits lower deformation level in DC dynamic modes of actuation. It is inferred that the strong entanglements and crosslinks in polymer chains enhances the resonant frequency, but debilitate the intensity of vibration of viscoelastic DEAs. Further, the periodicity and stability of the nonlinear oscillations exhibited by the viscoelastic DEAs are assessed by employing the Poincare maps and phase portraits. The results of the present investigation can be applied effectively in bridging the mechanism between the microcosmic polymer chains and macroscopic dynamic behavior of viscoelastic DE actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bai, Y., Jiang, Y., Chen, B., Foo, C.C., Zhou, Y., Xiang, F., Zhou, J., Wang, H., Suo, Z.: Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Appl. Phys. Lett. 104(6), 062902 (2014)

    Article  Google Scholar 

  2. Bar-Cohen, Y.: Electroactive polymers as artificial muscles-reality and challenges. (2001)

  3. Bortot, E.: Nonlinear dynamic response of soft thick-walled electro-active tubes. Smart Mater. Struct. 27(10), 105025 (2018)

    Article  Google Scholar 

  4. Bozlar, M., Punckt, C., Korkut, S., Zhu, J., Foo, C.C., Suo, Z., Aksay, I.A.: Dielectric elastomer actuators with elastomeric electrodes. Appl. Phys. Lett. 101(9), 091907 (2012)

    Article  Google Scholar 

  5. Carpi, F., Bauer, S., De Rossi, D.: Stretching dielectric elastomer performance. Science 330(6012), 1759–1761 (2010)

    Article  Google Scholar 

  6. Carpi, F., Frediani, G., Turco, S., De Rossi, D.: Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21(21), 4152–4158 (2011)

    Article  Google Scholar 

  7. Foo, C.C., Cai, S., Koh, S.J.A., Bauer, S., Suo, Z.: Model of dissipative dielectric elastomers. J. Appl. Phys. 111(3), 034102 (2012)

    Article  Google Scholar 

  8. Foo, C.C., Koh, S.J.A., Keplinger, C., Kaltseis, R., Bauer, S., Suo, Z.: Performance of dissipative dielectric elastomer generators. J. Appl. Phys. 111(9), 094107 (2012)

    Article  Google Scholar 

  9. Dai, H., Wang, L.: Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dyn. 82(4), 1709–1719 (2015)

    Article  Google Scholar 

  10. Dai, H., Zou, J., Wang, L.: Effect of initial stretch ratio on the electromechanical responses of dielectric elastomer actuators. Appl. Phys. A 122(5), 1–6 (2016)

    Article  Google Scholar 

  11. Davidson, J.D., Goulbourne, N.C.: A nonaffine network model for elastomers undergoing finite deformations. J. Mech. Phys. Solids 61(8), 1784–1797 (2013)

    Article  Google Scholar 

  12. Eder-Goy, D., Zhao, Y., Bai-Xiang, X.: Dynamic pull-in instability of a prestretched viscous dielectric elastomer under electric loading. Acta Mech. 228(12), 4293–4307 (2017)

    Article  MathSciNet  Google Scholar 

  13. Fox, J.W., Goulbourne, N.C.: On the dynamic electromechanical loading of dielectric elastomer membranes. J. Mech. Phys. Solids 56(8), 2669–2686 (2008)

    Article  Google Scholar 

  14. Godara, R.K., Joglekar, M.M.: Mitigation of residual oscillations in electrostatically actuated microbeams using a command-shaping approach. J. Micromech. Microeng. 25(11), 115028 (2015)

    Article  Google Scholar 

  15. Godara, R.K., Sharma, A.K., Joshi, N., Joglekar, M.M.: A novel capacitive mass sensor using an open-loop controlled microcantilever. Microsyst. Technol. 26, 2977–2987 (2020)

    Article  Google Scholar 

  16. Guo-Ying, G., Gupta, U., Zhu, J., Zhu, L.-M., Zhu, X.: Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans. Robot. 33(5), 1263–1271 (2017)

    Article  Google Scholar 

  17. Joglekar, M.M.: Dynamic-instability parameters of dielectric elastomer actuators with equal biaxial prestress. AIAA J. 53(10), 3129–3133 (2015)

    Article  Google Scholar 

  18. Joglekar, M.M., Pawaskar, D.N.: Estimation of oscillation period/switching time for electrostatically actuated microbeam type switches. Int. J. Mech. Sci. 53(2), 116–125 (2011)

    Article  Google Scholar 

  19. Kashyap, K., Sharma, A.K., Joglekar, M.M.: Nonlinear dynamic analysis of aniso-visco-hyperelastic dielectric elastomer actuators. Smart Mater. Struct. 29, 055014 (2020)

    Article  Google Scholar 

  20. Keplinger, C., Kaltenbrunner, M., Arnold, N., Bauer, S.: Capacitive extensometry for transient strain analysis of dielectric elastomer actuators. Appl. Phys. Lett. 92(19), 192903 (2008)

    Article  Google Scholar 

  21. Keplinger, C., Li, T., Baumgartner, R., Suo, Z., Bauer, S.: Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8(2), 285–288 (2012)

    Article  Google Scholar 

  22. Keplinger, C., Sun, J.-Y., Foo, C.C., Rothemund, P., Whitesides, G.M., Suo, Z.: Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013)

    Article  Google Scholar 

  23. Khan, K.A., Wafai, H., El-Sayed, T.: A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer. Comput. Mech. 52(2), 345–360 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khurana, A., Kumar, A., Raut, S.K., Sharma, A.K., Joglekar, M.M.: Effect of viscoelasticity on the nonlinear dynamic behavior of dielectric elastomer minimum energy structures. Int. J. Solids Struct. 208, 141–153 (2021)

    Article  Google Scholar 

  25. Kiser, J., Manning, M., Adler, D., Breuer, K.: A reduced order model for dielectric elastomer actuators over a range of frequencies and prestrains. Appl. Phys. Lett. 109(13), 133506 (2016)

    Article  Google Scholar 

  26. Lee, H.S., Phung, H., Lee, D.-H., Kim, U.K., Nguyen, C.T., Moon, H., Koo, J.C., Choi, H.R., et al.: Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sens. Actuators A Phys. 205, 191–198 (2014)

    Article  Google Scholar 

  27. Li, B., Zhang, J., Chen, H., Li, D.: Voltage-induced pinnacle response in the dynamics of dielectric elastomers. Phys. Rev. E 93(5), 052506 (2016)

    Article  Google Scholar 

  28. Li, Y., Inkyu, O., Chen, J., Zhang, H., Yuhang, H.: Nonlinear dynamic analysis and active control of visco-hyperelastic dielectric elastomer membrane. Int. J. Solids Struct. 152, 28–38 (2018)

    Article  Google Scholar 

  29. Liu, Y., Liu, L., Zhang, Z., Jiao, Y., Sun, S., Leng, J.: Analysis and manufacture of an energy harvester based on a Mooney-Rivlin-type dielectric elastomer. EPL 90(3), 36004 (2010)

    Article  Google Scholar 

  30. Lu, T., Huang, J., Jordi, C., Kovacs, G., Huang, R., Clarke, D.R., Suo, Z.: Dielectric elastomer actuators under equal-biaxial forces, uniaxial forces, and uniaxial constraint of stiff fibers. Soft Matter 8(22), 6167–6173 (2012)

    Article  Google Scholar 

  31. Moretti, G., Rosset, S., Vertechy, R., Anderson, I., Fontana, M.: A review of dielectric elastomer generator systems. Adv. Intell. Syst. 2(10), 2000125 (2020)

    Article  Google Scholar 

  32. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (2008)

    MATH  Google Scholar 

  33. Patra, K., Kumar, R.S.: A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. Int. J. Mech. Mater. Des. 11(1), 79–90 (2015)

    Article  Google Scholar 

  34. Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    Article  Google Scholar 

  35. Pharr, M., Sun, J.-Y., Suo, Z.: Rupture of a highly stretchable acrylic dielectric elastomer. J. Appl. Phys. 111(10), 104114 (2012)

    Article  Google Scholar 

  36. Plante, J.-S., Dubowsky, S.: Large-scale failure modes of dielectric elastomer actuators. Int. J. Solids Struct. 43(25), 7727–7751 (2006)

    Article  MATH  Google Scholar 

  37. Rosset, S., Araromi, O.A., Shintake, J., Shea, H.R.: Model and design of dielectric elastomer minimum energy structures. Smart Mater. Struct. 23(8), 085021 (2014)

    Article  Google Scholar 

  38. Sarban, R., Lassen, B., Willatzen, M.: Dynamic electromechanical modeling of dielectric elastomer actuators with metallic electrodes. IEEE/ASME Trans. Mechatron. 17(5), 960–967 (2011)

    Article  Google Scholar 

  39. Sharma, A.K.: Design of a command-shaping scheme for mitigating residual vibrations in dielectric elastomer actuators. J. Appl. Mech. 87(2), 021007 (2020)

  40. Sharma, A.K., Joglekar, M.M.: A computationally efficient locking free numerical framework for modeling visco-hyperelastic dielectric elastomers. Comput. Methods Appl. Mech. Eng. 352, 625–653 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sharma, A.K., Joglekar, M.M.: A numerical framework for modeling anisotropic dielectric elastomers. Comput. Methods Appl. Mech. Eng. 344, 402–420 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sharma, A.K., Joglekar, M.M.: Effect of anisotropy on the dynamic electromechanical instability of a dielectric elastomer actuator. Smart Mater. Struct. 28(1), 015006 (2018)

    Article  Google Scholar 

  43. Sharma, A.K., Bajpayee, S., Joglekar, D.M., Joglekar, M.M.: Dynamic instability of dielectric elastomer actuators subjected to unequal biaxial prestress. Smart Mater. Struct. 26(11), 115019 (2017)

    Article  Google Scholar 

  44. Sharma, A.K., Arora, N., Joglekar, M.M.: Dc dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2211), 20170900 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Sharma, A.K., Godara, R.K., Joglekar, M.M.: Static and dc dynamic pull-in analysis of curled microcantilevers with a compliant support. Microsyst. Technol. 25(3), 965–975 (2019)

    Article  Google Scholar 

  46. Sharma, A.K., Kumar, P., Singh, A., Joglekar, D.M., Joglekar, M.M.: Electromechanical instability of dielectric elastomer actuators with active and inactive electric regions. J. Appl. Mech. 86(6), 061008 (2019)

    Article  Google Scholar 

  47. Sharma, A.K., Sheshkar, N., Gupta, A.: Static and dynamic stability of dielectric elastomer fiber composites. Mater Today Proc (2021). https://doi.org/10.1016/j.matpr.2020.12.151

  48. Sheng, J., Chen, H., Li, B.: Effect of temperature on the stability of dielectric elastomers. J. Phys. D Appl. Phys. 44(36), 365406 (2011)

    Article  Google Scholar 

  49. Sheng, J., Chen, H., Li, B., Wang, Y.: Nonlinear dynamic characteristics of a dielectric elastomer membrane undergoing in-plane deformation. Smart Mater. Struct. 23(4), 045010 (2014)

    Article  Google Scholar 

  50. Suo, Z.: Mechanics of stretchable electronics and soft machines. MRS Bull. 37(03), 218–225 (2012)

    Article  Google Scholar 

  51. Thomson, G., Yurchenko, D., Val, D.V.: Dielectric elastomers for energy harvesting. In: Manyala R (ed) Energy harvesting. IntechOpen (2018). https://doi.org/10.5772/intechopen.74136

  52. Vatanjou, H., Hojjat, Y., Karafi, M.: Nonlinear dynamic analysis of dielectric elastomer minimum energy structures. Appl. Phys. A 125(9), 583 (2019)

    Article  Google Scholar 

  53. Wissler, M., Mazza, E.: Modeling and simulation of dielectric elastomer actuators. Smart Mater. Struct. 14(6), 1396 (2005)

    Article  Google Scholar 

  54. Bai-Xiang, X., Mueller, R., Theis, A., Klassen, M., Gross, D.: Dynamic analysis of dielectric elastomer actuators. Appl. Phys. Lett. 100(11), 112903 (2012)

    Article  Google Scholar 

  55. Yong, H., He, X., Zhou, Y.: Electromechanical instability in anisotropic dielectric elastomers. Int. J. Eng. Sci. 50(1), 144–150 (2012)

    Article  MATH  Google Scholar 

  56. Zhang, J., Chen, H., Sheng, J., Liu, L., Wang, Y., Jia, S.: Dynamic performance of dissipative dielectric elastomers under alternating mechanical load. Appl. Phys. A 116(1), 59–67 (2014)

    Article  Google Scholar 

  57. Zhang, J., Chen, H., Li, B., McCoul, D., Pei, Q.: Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers. Soft Matter 11(38), 7483–7493 (2015)

    Article  Google Scholar 

  58. Zhang, J., Tang, L., Li, B., Wang, Y., Chen, H.: Modeling of the dynamic characteristic of viscoelastic dielectric elastomer actuators subject to different conditions of mechanical load. J. Appl. Phys. 117(8), 084902 (2015)

    Article  Google Scholar 

  59. Zhang, J., Chen, H., Li, D.: Nonlinear dynamical model of a soft viscoelastic dielectric elastomer. Phys. Rev. Appl. 8(6), 064016 (2017)

    Article  Google Scholar 

  60. Zhang, J., Jie, R., Chen, H., Li, D., Jian, L.: Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin-Voigt-Maxwell model. Appl. Phys. Lett. 110(4), 044104 (2017)

    Article  Google Scholar 

  61. Zhang, J., Chen, H., Li, D.: Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations. J. Appl. Phys. 123(8), 084901 (2018)

    Article  Google Scholar 

  62. Zhao, X., Suo, Z.: Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 91(6), 061921 (2007)

    Article  Google Scholar 

  63. Zhu, J., Luo, J.: Effect of entanglements on the electromechanical stability of dielectric elastomers. EPL 119(2), 26003 (2017)

    Article  Google Scholar 

  64. Zhu, J., Luo, J.: Effects of entanglements and finite extensibility of polymer chains on the mechanical behavior of hydrogels. Acta Mech. 229(4), 1703–1719 (2018)

    Article  MathSciNet  Google Scholar 

  65. Zhu, J., Luo, J., Xiao, Z.: Snap-through instability analysis of dielectric elastomers with consideration of chain entanglements. Mater. Res. Express 5(6), 065307 (2018)

    Article  Google Scholar 

  66. Zhu, J., Cai, S., Suo, Z.: Nonlinear oscillation of a dielectric elastomer balloon. Polym. Int. 59(3), 378–383 (2010)

    Article  Google Scholar 

  67. Zhu, J., Cai, S., Suo, Z.: Resonant behavior of a membrane of a dielectric elastomer. Int. J. Solids Struct. 47(24), 3254–3262 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the anonymous reviewers for their insightful comments. This research is supported financially by the Science and Engineering Research Board (SERB), India through Grant No. EMR/2017/003289 and the Department of Science and Technology(DST), Government of India through Grant No. DST/INSPIRE/04/2019/000500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar Sharma.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Governing equations of DE membrane subjected to equal biaxial prestress

Appendix: Governing equations of DE membrane subjected to equal biaxial prestress

In order to validate the efficacy of the developed framework with the experimental observations reported by [30], it is assumed that the DE membrane is also subjected to initial equal biaxial prestress S. The work done due to applied equal biaxial prestress S is expressed [43] as

$$\begin{aligned} \displaystyle W_{pre} = - 8HL^2 \left( {2S\lambda } \right) \end{aligned}$$
(A.1)

Hence, the total potential energy U (Eq. 9) of the considered DE actuator subjected to electromechanical loading become

$$\begin{aligned}&U = 8HL^2 \nonumber \\&\quad \times \left[ \displaystyle \begin{array}{l} \underbrace{\left[ {\begin{array}{*{20}c} {\displaystyle \frac{1}{6}\mu _c \left( {2\lambda ^2 + \lambda ^{ - 4} } \right) } \\ \\ {\displaystyle - \mu _c \lambda _{\max }^2 \ln \left( {3\lambda _{\max }^2 - 2\lambda ^2 - \lambda ^{ - 4} } \right) } \\ \\ {\,\displaystyle + \mu _e \left( {2\lambda + 2\lambda ^{ - 1} + \lambda ^{ - 2} + \lambda ^2 } \right) } \\ \end{array}} \right] }_{isotropic\,\,equilibrium} \\ \\ \displaystyle + \underbrace{\left[ {\begin{array}{*{20}c} {\displaystyle \frac{1}{6}\beta \mu _c \left( {2\lambda ^2 \lambda _v^{ - 2} + \lambda ^{ - 4} \lambda _v^4 } \right) } \\ \\ { \displaystyle - \beta \mu _c \lambda _{\max }^2 \ln \left( {3\lambda _{\max }^2 - 2\lambda ^2 \lambda _v^{ - 2} - \lambda ^{ - 4} \lambda _v^4 } \right) } \\ \\ { \displaystyle + \beta \mu _e \left( {2\lambda \lambda _v^{ - 1} + 2\lambda ^{ - 1} \lambda _v + \lambda ^{ - 2} \lambda _v^2 + \lambda ^2 \lambda _v^{ - 2} } \right) } \\ \end{array}} \right] }_{isotropic\,\,viscous} \\ \\ \displaystyle - \underbrace{\left[ {\displaystyle \frac{1}{2}\varepsilon E^2 \lambda ^4 } \right] }_{electrical} - \underbrace{\displaystyle \left[ {2S\lambda } \right] }_{prestress} \\ \end{array} \right] \nonumber \\ \end{aligned}$$
(A.2)

Since the relaxation due to applied prestress is assumed to be completed before voltage excitation starts, one can determine the equilibrium stretch \(\lambda _p\), induced by the prestress. At equilibrium state, the viscous strain is equal to the total strain, i.e., \(\displaystyle \left. {\lambda _v } \right| _{t = 0} = \left. \lambda \right| _{t = 0}\) [12]. For this particular stated state, the associated elastic energy in the hyperelastic element of the Maxwell element is released, i.e.,work done associated with viscous part \(W_v\) = 0. Upon invoking this condition and on setting the first variation of the total potential energy U with respect to stretch \(\lambda \) equal to zero, i.e., \(\displaystyle \frac{{\mathrm{d}U}}{{\mathrm{d}\lambda }} = 0\), the equilibrium equation is expressed as

$$\begin{aligned}&\displaystyle \mu _c \left( {\lambda - \lambda ^{ - 5} } \right) \displaystyle \left( {\frac{1}{3} + \frac{{2\lambda _{\max }^2 }}{{3\lambda _{\max }^2 - 2\lambda ^2 - \lambda ^{ - 4} }}} \right) \nonumber \\&\qquad - \displaystyle \mu _e \left( {1 + \lambda - \lambda ^{ - 2} - \lambda ^{ - 3} } \right) - S \nonumber \\&\quad \displaystyle = \varepsilon \left( {\frac{\phi }{{2H}}} \right) ^2 \lambda ^3 \end{aligned}$$
(A.3)

The value of prestress S required to obtained the prestretch \(\lambda _p\) in the DE membrane can be evaluated by implementing \(\lambda = \lambda _p\) and \(\phi = 0\) in Eq. (A.3) for any given value of material parameters as

$$\begin{aligned} \displaystyle S= & {} \mu _c \left( {\lambda _p - \lambda _p^{ - 5} } \right) \left( {\frac{1}{3} + \frac{{2\lambda _{\max }^2 }}{{3\lambda _{\max }^2 - 2\lambda _p^2 - \lambda _p^{ - 4} }}} \right) \nonumber \\&- \mu _e \left( {1 + \lambda _p - \lambda _p^{ - 2} - \lambda _p^{ - 3} } \right) \end{aligned}$$
(A.4)

The resulting nonlinear governing differential equation of motion Eq. (13) of the DE actuator including the expressions of initial equal biaxial pre stress is expressed as

$$\begin{aligned}&\displaystyle \left( {\rho L^2 + 2\rho H^2 \lambda ^{ - 6} } \right) \ddot{\lambda }= 6\rho H^2 \lambda ^{ - 7} {\dot{\lambda }} ^2 \nonumber \\&\quad { \displaystyle - 3\left[ {\begin{array}{*{20}c} \begin{array}{l} \displaystyle \mu _c \left( {\lambda - \lambda ^{ - 5} } \right) \left\{ {\frac{1}{3} + \frac{{2\lambda _{\max ^2 } }}{{\left( {3\lambda _{\max ^2 } - 2\lambda ^2 - \lambda ^{ - 4} } \right) }}} \right\} \\ \\ \displaystyle + \beta \mu _c \left( {\lambda \lambda _v^{ - 2} - \lambda ^{ - 5} \lambda _v^4 } \right) \left\{ {\frac{1}{3} + \frac{{2\lambda _{\max ^2 } }}{{\left( {3\lambda _{\max ^2 } - 2\lambda ^2 \lambda _v^{ - 2} - \lambda ^{ - 4} \lambda _v^4 } \right) }}} \right\} \\ \end{array} \\ {} \\ \\ \begin{array}{l} \displaystyle + \mu _e \left( {1 + \lambda - \lambda ^{ - 2} - \lambda ^{ - 3} } \right) + \beta \mu _e \left( {\lambda _v^{ - 1} + \lambda \lambda _v^{ - 2} - \lambda ^{ - 2} \lambda _v - \lambda ^{ - 3} \lambda _v^2 } \right) \\ \\ \\ \displaystyle - \varepsilon E^2 \lambda ^3 \displaystyle - 2S \\ \end{array} \\ \end{array}} \right] } \end{aligned}$$
(A.5)

The evolution Eq. (15) of the considered DE membrane is written as

$$\begin{aligned}&\displaystyle \frac{{\mathrm{d}\lambda _v }}{{\mathrm{d}t}} + \displaystyle \frac{{2\beta \mu _c }}{\eta }\nonumber \\&\quad \left[ \begin{array}{l} \displaystyle \left( {\lambda ^{ - 4} \lambda _v^3 - \lambda ^2 \lambda _v^{ - 3} } \right) \left\{ {\frac{1}{3} \displaystyle + \frac{{\lambda _{\max ^2 } }}{{3\left( {3\lambda _{\max }^2 - 2\lambda ^2 \lambda _v^{ - 2} - \lambda ^{ - 4} \lambda _v^4 } \right) }}} \right\} \\ \\ + \displaystyle \frac{{\mu _e }}{{\mu _c }} \left( {\lambda ^{ - 1} \displaystyle + \lambda ^{ - 2} \lambda _v - \lambda \lambda _v^{ - 2} - \lambda ^2 \lambda _v^{ - 3} } \right) \\ \end{array} \right] \nonumber \\&\qquad = 0. \end{aligned}$$
(A.6)

Hence, modified three initial conditions of the DE membrane due to initially applied pre stress (Eq. 16) are expressed as

$$\begin{aligned} \left. {\frac{{\mathrm{d}\lambda }}{{\mathrm{d}t }}} \right| _{t = 0} = 0; \,\,\,\,\,\,{\left. {{\lambda }} \right| _{t = 0}} = \lambda _p;\,\,\,\,\,\,{\left. {{\lambda _v}} \right| _{t = 0}} = 1. \end{aligned}$$
(A.7)

In order to fit the experimental data, Lu et al. [30] implemented the Gent model with the following material parameters of the DE membrane (VHB4905), shear modulus \(\mu = 45\) kPa, permittivity \(\varepsilon = 3.98\times 10^{ - 11}\) F m\(^{ - 1} \), thicknes \(H = 0.5\) mm and limiting stretch material constant \(J_{\lim } = 120\) respectively.

To validate the present model, we also use the same group of material parameters. we have \(\mu = \mu _e + \mu _c = 45\) kPa, permittivity \(\varepsilon = 3.98\times 10^{ - 11} Fm^{ - 1} \), thicknes \(2H = 0.5\) mm, \(\displaystyle \lambda _{\max } = \sqrt{\frac{{J_{\lim } + 3}}{3}} = 6.4\) and modulus ratio \(\displaystyle \frac{{\mu _e }}{{\mu _c }} = 0.18\). This modulus ratio can be tuned to get the best fitted curves with the experimental results. The other important required material parameters considered are the density of the DE membrane (VHB4905) \(\rho = 960\) kg m\(^{ - 3}\) [33] and viscoelastic relaxation time, which ranges from a few seconds to hundreds of seconds at room temperature, \(\displaystyle \tau _v = \frac{\eta }{{\mu _c \beta }}=10^2\) s [7, 20].

Finally for the stated parameters, the nonlinear differential Eq. (A.5) together with evolution Eq. (A.6) and initial conditions (Eq. A.7) are solved using MATLAB for evaluating the lateral stretch \(\lambda \) at applied voltage \(\phi \). The voltage \(\phi \) was applied using a programmable voltage source with a ramping rate of \(0.5kVs^{ - 1} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, A., Kumar, A., Sharma, A.K. et al. Effect of polymer chains entanglements, crosslinks and finite extensibility on the nonlinear dynamic oscillations of dielectric viscoelastomer actuators. Nonlinear Dyn 104, 1227–1251 (2021). https://doi.org/10.1007/s11071-021-06328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06328-z

Keywords

Navigation