The small angle diffraction pattern does not change passing from the initial to the final degree of calcification. the final degree of calcification. Furthermore the only difference in the diffraction pattern of longitudinal and alternate single osteons is an increased arcing of the reflections clearly due to a higher spread of the inorganic blocks with respect to the osteon axis. Thus the orientation of the inorganic blocks, that is the course of the collagen fibrils in single osteons and in osteonic hemisections, has been deduced from the arcing of the small angle meridional reflections. These results are used for a more detailed description of the structural organisation of collagen fibrils and inorganic particles in osteonic lamellae. 15.6-2 X-RAY DIFFRACTION STUDIES OF VERY SMALL CRYSTALS WITH SYNCHROTRON RADIATION. By Janet E. Hails and Marjorie M. Harding, I.P.I. Chemistry Department, University of Liverpool, Liverpool, U.K. The high intensity of the synchrotron radiation source should allow the recording of diffraction data for structure determination from crystals substantially smaller than those which can be studied with conventional X-ray sources and equipment. We are using an Arndt-Wonacott oscillation camera and other protein crystallography equipment, set up at SERC Daresbury Laboratory by Dr. J.R. Helliwell, to study crystals including nucleotides and oligosaccharides. Diffraction patterns have already been recorded for a crystal of dimensions 0.03 x 0.03 x 0.05 mm, using radiation of wavelength 1.488 %; further progress will be reported. 15.6-3 STRUCTURE INVESTIGATION OF A 6 μm CaF₂ CRYSTAL: FIRST EXPERIENCES WITH SYNCHROTRON RADIATION. By R. Bachmann, H. Kohler, Heinz Schulz and H.-P. Weber, Max-Planck-Institut für Festkörperforschung, D-7 Stuttgart F.R.G. Two sets of Bragg reflections have been collected from a CaF2 crystal with an average edge length of $6\,\mu m$ (Fig. 1). Crystal orientation and data collection were carried out with synchrotron radiation at the storage ring DORIS II, HASYLAB, DESY, Hamburg in cooperation with the Institute of Crystallography of the University of Göttingen (Bachmann, Kohler, Schulz, Weber, Kupcik, Wendschuh, Wolf, Wulf, Angew. Chemie 95 (1983) 1013). The scattering power S of this crystal is equal to $$S = (\frac{F_{000}}{V_e})^2 V_c \lambda^3 = 1.3 \cdot 10^{14}$$ Fig. 1 Comparison of the 6 μm CaF $_2$ crystal fixed to glass pin in comparison with a human hair. Bar at the lower edge corresponds to 10 μm Fig. 2 $\,\omega\text{-scan}$ of the (220) reflection