Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activity of CNS depressants related to hydrophobicity

Abstract

SEVERAL theories of general anaesthesia account for the depression of neuronal excitability as a depression of membrane mechanisms underlying axonal conduction1–4 or synaptic transmission5–16. The latter is more likely since general anaesthetics depress transmission in concentrations which do not block axonal conduction6,7,11,15,18. In vertebrates, excitatory postsynaptic potentials (epsps) are invariably depressed12,15–20, while under the same conditions inhibitory postsynaptic potentials (ipsps)4,21–23 and excitatory presynaptic potentials (resulting in presynaptic inhibition) are preserved (and prolonged)24–27. Using invertebrate preparations we found28 that (1) pentobarbital selectively and reversibly depresses Na+-dependent epsps without affecting either Cl- or K+-dependent ipsps, and (2) pentobarbital and other central nervous system (CNS) depressants selectively and reversibly depress postsynaptic excitation (induced by application of putative transmitters) which is coupled primarily to an increase in Na+ conductance without affecting postsynaptic inhibition (induced by application of putative transmitters) which is coupled to either Cl or K+ conductance increases. Selective depression of postsynaptic excitation would presumably lead to a decrease in the ratio of epsps to ipsps and thus account for much of the generalised decrease in neuronal activity during general anaesthesia. The observations by Meyer29 and Overton30 that general anaesthetic potency is directly proportional to the oil/water partition coefficient have prompted me to investigate the correlation between depressant activity and hydrophobicity. I report here that (1) depressant activity on invertebrate postsynaptic membranes is quantitatively correlated with hydrophobicity (r=0.982), and (2) analysis of published data from a vertebrate preparation indicates that the ratio of drug concentrations depressing axonal conduction and synaptic transmission equally is also quantitatively correlated with hydrophobicity (r = 0.96).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thesleff, S., Acta Physiol. Scand., 37, 335 (1956).

    Article  CAS  Google Scholar 

  2. Thornton, J. A., Whelpton, D., and Brown, B. H., Br. J. Anaesth., 40, 583 (1963).

    Article  Google Scholar 

  3. Blaustein, M. P., J. gen. Physiol., 49, 1043 (1966).

    Article  CAS  Google Scholar 

  4. Seeman, P., Pharm. Rev., 24, 583 (1972).

    CAS  PubMed  Google Scholar 

  5. Brooks, C. McC., and Eccles, J. C., J. Neurophysiol., 10, 349 (1947).

    Article  CAS  Google Scholar 

  6. Larrabee, M. G., and Posternak, J. M., J. Neurophysiol., 15, 91 (1952).

    Article  CAS  Google Scholar 

  7. Shapovolov, A. I., Farmakol. Toksikol., 26, 150 (1963).

    Google Scholar 

  8. Loyning, Y., Oshima, T., and Yokota, T., J. Neurophysiol., 27, 408 (1964).

    Article  CAS  Google Scholar 

  9. Mathews, E. K., and Quilliam, J. P., Br. J. Pharm., 22, 415 (1966).

    Google Scholar 

  10. Paton, W. D. M., and Speden, R. N., Br. Med. Bull., 21, 44 (1965).

    Article  CAS  Google Scholar 

  11. Somjen, G. G., Anesthesiology, 28, 135 (1967).

    Article  CAS  Google Scholar 

  12. Karis, J. H., Gissen, A. J., and Nastuk, W. L., Anesthesiology, 28, 128 (1967).

    Article  CAS  Google Scholar 

  13. Sato, M., Austin, G. M., and Yoi, H., Nature, 215, 1506 (1967).

    Article  ADS  CAS  Google Scholar 

  14. Chalazonitis, N., Anesthesiology, 28, 111 (1967).

    Article  CAS  Google Scholar 

  15. Richards, C. D., J. Physiol., Land., 227, 749 (1972).

    Article  CAS  Google Scholar 

  16. Nicoll, R. A., J. Physiol., Lond., 223, 803 (1972).

    Article  CAS  Google Scholar 

  17. Richards, C. D., J. Physiol., Lond., 233, 439 (1973).

    Article  CAS  Google Scholar 

  18. Somjen, G. G., and Gill, M., J. Pharmac. exp. Ther., 140, 19 (1963).

    CAS  Google Scholar 

  19. Westmoreland, B. F., Ward, D., and Johns, T. R., Brain Res., 26, 465 (1971).

    Article  CAS  Google Scholar 

  20. Thomson, T. D., and Turkanis, S. A., Br. J. Pharm., 48, 48 (1973).

    Article  CAS  Google Scholar 

  21. Weakly, J. N., Esplin, D. W., and Zablocka, B., Arch. int. Pharm. Ther., 171, 385 (1968).

    CAS  Google Scholar 

  22. Larson, M. D., and Major, M. A., Brain Res., 21, 309 (1970).

    Article  CAS  Google Scholar 

  23. Eccles, J. C., Faber, D. S., and Taborikova, H., Brain Res., 25, 335 (1971).

    Article  CAS  Google Scholar 

  24. Eccles, J. C., and Malcolm, J. L., J. Neurophysiol., 9, 139 (1946).

    Article  CAS  Google Scholar 

  25. Eccles, J. C., Schmidt, R. F., and Willis, W. D., J. Physiol, Lond., 168, 500 (1963).

    Article  CAS  Google Scholar 

  26. Schmidt, R. F., Ergb. Physiol., 63, 21 (1971).

    Google Scholar 

  27. Miyahara, J. T., Esplin, D. W., and Zablocka, B., J. Pharm. exp. Ther., 154, 118 (1966).

    Google Scholar 

  28. Barker, J. L., and Gainer, H., Science, 182, 720 (1973).

    Article  ADS  CAS  Google Scholar 

  29. Meyer, K. H., Trans. Faraday Soc., 33, 1062 (1937).

    Article  CAS  Google Scholar 

  30. Overton, E., Z. phys. Chem., 22, 189 (1896).

    Google Scholar 

  31. Gissen, A. J., Karis, J. H., and Nastuk, W. L., J. Am. med. Assoc., 197, 770 (1966).

    Article  CAS  Google Scholar 

  32. Adams, P. R., Cash, H. C., and Quilliam, J. P., Br. J. Pharm., 40, 552–553P (1970).

    Google Scholar 

  33. Lee Son, S., Waud, B. E., and Waud, D. R., Fedn Proc., 33, 510 (1974).

    Google Scholar 

  34. Krnjevic, K., and Phillis, J. W., J. Physiol., Lond., (in the press).

  35. Crawford, J. M., and Curtis, D. R., J. Physiol., Lond., 186, 121 (1966).

    Article  CAS  Google Scholar 

  36. Galindo, A., J. Pharm. exp. Ther., 177, 360 (1971).

    CAS  Google Scholar 

  37. Crawford, J. M., Neuropharmacology, 9, 31 (1970).

    Article  CAS  Google Scholar 

  38. Bradley, P. B., and Dray, A., Br. J. Pharm., 48, 212 (1973).

    Article  CAS  Google Scholar 

  39. Narahashi, T., Moore, J. W., and Poston, R. N., J. Neurobiol., 1, 3 (1969).

    Article  CAS  Google Scholar 

  40. Larrabee, M. G., Ramos, J. G., and Bulbring, E., J. cell. comp. Physiol., 40, 461 (1952).

    Article  CAS  Google Scholar 

  41. Hansch, C., and Dunn, W. J., J. Pharm. Sci., 61, 1 (1972).

    Article  CAS  Google Scholar 

  42. Quastel, D. M. J., Hackett, J. T., and Cooke, J. D., Science, 172, 1034 (1971).

    Article  ADS  CAS  Google Scholar 

  43. Weakly, J. N., J. Physiol., Lond., 204, 63 (1969).

    Article  CAS  Google Scholar 

  44. Price, H. L., and Dripps, R. D., in The pharmacological basis of therapeutics (edit. by Goodman, L. S., and Gilman, A.), 83 (Macmillian, New York, 1965).

    Google Scholar 

  45. Adams, P. R., J. Physiol. Lond., (in the press).

  46. Quastel, D. M. J., and Linder, M., Symp. Molecular mechanisms of anesthesia, Seattle, 11 (1974).

  47. Leo, A., Hansch, C., and Elkins, D., Chem. Rev., 71, 525 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BARKER, J. Activity of CNS depressants related to hydrophobicity. Nature 252, 52–54 (1974). https://doi.org/10.1038/252052a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/252052a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing