Skip to main content

Advertisement

Log in

Upward continuation of Dome-C airborne gravity and comparison with GOCE gradients at orbit altitude in east Antarctica

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

An airborne gravity campaign was carried out at the Dome-C survey area in East Antarctica between the 17th and 22nd of January 2013, in order to provide data for an experiment to validate GOCE satellite gravity gradients. After typical filtering for airborne gravity data, the cross-over error statistics for the few crossing points are 11.3 mGal root mean square (rms) error, corresponding to an rms line error of 8.0 mGal. This number is relatively large due to the rough flight conditions, short lines and field handling procedures used. Comparison of the airborne gravity data with GOCE RL4 spherical harmonic models confirmed the quality of the airborne data and that they contain more high-frequency signal than the global models. First, the airborne gravity data were upward continued to GOCE altitude to predict gravity gradients in the local North-East-Up reference frame. In this step, the least squares collocation using the ITGGRACE2010S field to degree and order 90 as reference field, which is subtracted from both the airborne gravity and GOCE gravity gradients, was applied. Then, the predicted gradients were rotated to the gradiometer reference frame using level 1 attitude quaternion data. The validation with the airborne gravity data was limited to the accurate gradient anomalies (TXX, TYY, TZZ and TXZ) where the long-wavelength information of the GOCE gradients has been replaced with GOCO03s signal to avoid contamination with GOCE gradient errors at these wavelengths. The comparison shows standard deviations between the predicted and GOCE gradient anomalies TXX, TYY, TZZ and TXZ of 9.9, 11.5, 11.6 and 10.4 mE, respectively. A more precise airborne gravity survey of the southern polar gap which is not observed by GOCE would thus provide gradient predictions at a better accuracy, complementing the GOCE coverage in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabelos D. and Tscherning C.C., 1990. Simulation of regional gravity field recovery from satellite gravity gradiometer data using collocation and FFT. J. Geodesy, 64, 363–382.

    Article  Google Scholar 

  • Arabelos D. and Tscherning C.C., 1998. Calibration of satellite gradiometer data aided by ground gravity data. J. Geodesy, 72, 617–625.

    Article  Google Scholar 

  • Arabelos D., Tscherning C.C. and Veicherts M., 2007. External calibration of GOCE SGG data with terrestrial gravity data: a simulation study. In: Tregoning P. and Rizos C. (Eds), Dynamic Planet. International Association of Geodesy Symposia, 130. Springer-Verlag, Heidelberg, Germany, 337–344.

    Chapter  Google Scholar 

  • Barzaghi R., Tselfes N., Tziavos I.N. and Vergos G.S., 2009. Geoid and high resolution topography modelling in the Mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation. J. Geodesy, 83, 751–772.

    Article  Google Scholar 

  • Bölling C. and Grafarend E.W., 2005. Ellipsoidal spectral properties of the Earth’s gravitational potential and its first and second derivatives. J. Geodesy, 79, 300–330.

    Article  Google Scholar 

  • Bouman J., Koop R., Tscherning C.C. and Visser P., 2004. Calibration of GOCE SGG data using high-low SST, terrestrial gravity data and global gravity field models. J. Geodesy, 78, 124–137.

    Article  Google Scholar 

  • Bouman J., Fiorot S., Fuchs M., Gruber T., Schrama E., Tscherning C.C., Veicherts M., Visser P., 2011a. GOCE Gravity gradients along the orbit. J. Geodesy, 85, 791–805, DOI: 10.1007/s00190-011-0464-0.

    Article  Google Scholar 

  • Bouman J., Bosch W. and Sebera J., 2011b. Assessment of systematic errors in the computation of gravity gradients from satellite altimetry. Mar. Geod., 34, 85–107.

    Article  Google Scholar 

  • Bouman J. and Fuchs M., 2012. GOCE gravity gradients versus global gravity field models. Geophys. J. Int., 189, 846–850.

    Article  Google Scholar 

  • Bruinsma S., Förste C., Abrikosov O., Marty J.C., Rio M.-H., Mulet S. and Bonvalot S., 2013. The new ESA satellite-only gravity field model via the direct approach. Geophys. Res. Lett., 40, 3607–3612, DOI: 10.1002/grl.50716.

    Article  Google Scholar 

  • Denker H., 2003. Computation of gravity gradients for Europe for calibration/validation of GOCE data. In: Tziavos I.N. (Ed.), Gravity and Geoid 2002. Ziti Editions, Thessaloniki, Greece, 287–292 (http://olimpia.topo.auth.gr/gg2002/session3/denker.pdf).

    Google Scholar 

  • Eicker A., Schall J. and Kusche J., 2014. Regional gravity modelling from spaceborne data: case studies with GOCE. Geophys. J. Int., 196, 1431–1440.

    Article  Google Scholar 

  • European Space Agency, 1999. Gravity Field and Steady-State Ocean Circulation Mission -The Four Candidate Earth Explorer Core Missions. Technical Report, ESA SP-1233(1), European Space Agency Publications Division, Noordwijk, The Netherlands.

  • Eshagh M., 2009. Towards validation of satellite gradiometric data using modified version of 2nd order partial derivatives of extended Stokes’ formula. Artif. Satell., 44, 103–129.

    Google Scholar 

  • Eshagh M., 2010. Least-squares modification of extended Stokes’ formula and its second-order radial derivative for validation of satellite gravity gradiometry data. J. Geodyn., 49, 92–104.

    Article  Google Scholar 

  • Eshagh M., 2011a. Semi-stochastic modification of second-order radial derivative of Abel-Poisson’s formula for validating satellite gravity gradiometry data. Adv. Space Res., 47, 757–767.

  • Eshagh M., 2011b. On integral approach to regional gravity field modelling from satellite gradiometric data. Acta Geophys., 59, 29–54.

  • Forsberg R., Olesen A.V., Yildiz H. and Tscherning C.C., 2011. Polar gravity fields from GOCE and airborne gravity. In: Ouwehand L. (Ed.), Proceedings of 4th International GOCE User Workshop. ESA-SP 696, European Space Agency, Noordwijk, The Netherlands, ISBN: 978-92-9092-260-5.

    Google Scholar 

  • Forsberg R. and Olesen A.V., 2010. Airborne gravity field determination. In: Xu G. (Ed.), Sciences of Geodesy -I. Advances and Future Directions. Springer-Verlag, Heidelberg, Germany, 83–104, ISBN: 978-3-642-11741-1.

    Chapter  Google Scholar 

  • Forsberg R. and Tscherning C.C., 2008. An Overview Manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. Technical Report. Danish Space Center, Technical University of Denmark, Lyngby, Denmark (http://cct.gfy.ku.dk/publ_cct/cct1792.pdf).

    Google Scholar 

  • Freeden W., Volker M. and Nutz H., 2002. Satellite-to-satellite tracking and satellite gravity gradiometry (Advanced techniques for high-resolution geopotential field determination). J. Eng. Math., 43, 19–56.

    Article  Google Scholar 

  • Freeden W. and Nutz H., 2011. Satellite gravity gradiometry as tensorial inverse problem. International J. Geomath., 2, 177–218.

    Article  Google Scholar 

  • Fuchs M.J. and Bouman J., 2011. Rotation of GOCE gravity gradients to local frames. Geophys. J. Int., 187, 743–753, DOI: 10.1111/j.1365-246X.2011.05162.x.

    Article  Google Scholar 

  • Gruber T., Rummel R., Abrikosov O. and van Hees R. (Eds), 2012. GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110, Issue 4, Revision 3. European Space Agency, Noordwijk, The Netherlands (https://earth.esa.int/c/document_library/get_file-folderId=14168&name =DLFE-591.pdf).

    Google Scholar 

  • Haagmans R., Prijatna K. and Omang O.C.D., 2003. An alternative concept for validation of GOCE gradiometry results based on regional gravity. In: Tziavos I.N. (Ed.), Gravity and Geoid 2002. Ziti Editions, Thessaloniki, Greece, 281–286 (http://olimpia.topo.auth.gr/gg2002/session3/haagmans.pdf).

    Google Scholar 

  • Herceg M., Knudsen P. and Tscherning C.C., 2015. GOCE Data for Local Geoid Enhancement. In: Marti U. (Ed.), Gravity, Geoid and Height Systems. Springer-Verlag, Heidelberg, Germany, 133–142.

    Google Scholar 

  • Heiskanen W. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., San Francisco, CA.

    Google Scholar 

  • Kaas E., Sørensen B., Tscherning C.C. and Veicherts M., 2013. Multi-Processing least squares collocation: Applications to gravity field analysis. J. Geod. Sci., 3, 219–223, DOI: 10.2478/jogs-2013-0025.

    Google Scholar 

  • Kern M. and Haagmans R., 2005. Determination of gravity gradients from terrestrial gravity data for calibration and validation of gradiometric data. In: Jekeli C., Bastos L. and Fernandes L. (Eds), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, Springer-Verlag, Heidelberg, Germany, 95–100.

    Chapter  Google Scholar 

  • Kristensen S.S., Søbjerg S.S., Balling J.E. and Skou N., 2013. DOMECair Campaign EMIRAD Data: Presentation & Analysis. DTU-Space, Denmark Technical University, Copenhagen, Denmark (https://earth.esa.int/documents/10174/134665/DOMECair-Data-v1_2).

    Google Scholar 

  • Lieb V., Bouman J., Dettmering D., Fuchs M. and Schmidt M., 2016. Combination of GOCE gravity gradients in regional gravity field modelling using radial basis functions. In: Sneeuw N., Novák P. Crespi M. and Sansò F. (Eds), VIII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 142, Springer-Verlag, Berlin, Germany, 101–108.

    Google Scholar 

  • Martinec Z., 2003. Green’s function solution to spherical gradiometric boundary-value problems. J. Geodesy, 77, 41–49.

    Article  Google Scholar 

  • Mayer-Gürr T. and the GOCO Consortium, 2012. The new combined satellite only model GOCO03s. Presented at the International Symposium on Gravity, Geoid and Height Systems 2012, Venice, Italy (http://www.bernese.unibe.ch/publist/2012/pres/Pres_GGHS2012_mayerguerr_ etal.pdf).

    Google Scholar 

  • Mecklenburg S., Drusch M., Kerr YH., Font J., Martin-Neira M., Delwart S., Buenadicha G., Reul N., Daganzo-Eusebio E., Oliva R. and Crapolicchio R., 2012. ESA’s Soil Moisture and Ocean Salinity Mission: mission performance and operations. Geosci. Remote Sens., 50, 1354–1366, DOI: 10.1109/TGRS.2012.2187666.

    Article  Google Scholar 

  • Olesen A.V., 2002. Improved Airborne Scalar Gravimetry for Regional Gravity Field Mapping and Geoid Determination. Ph.D. Thesis. Technical Report 24, National Survey and Cadastre of Denmark, Copenhagen, Denmark, 123 pp. (ftp://ftp.dsri.dk/pub/hsk/AIRGRAV/avo _technical_report.pdf).

    Google Scholar 

  • Pail R., 2003. Local gravity field continuation for the purpose of in-orbit calibration of GOCE SGG observations. Adv. Geosci., 1, 11–18.

    Article  Google Scholar 

  • Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D, Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: 10.1007/s00190-011-0467-x.

    Article  Google Scholar 

  • Riedel S., Jokat W. and Steinhage D., 2012. Mapping tectonic provinces with airborne gravity and radar data in Dronning Maud Land, East Antarctica. Geophys. J. Int., 189, 414–427, DOI: 10.1111/j.1365-246X.2012.05363.x.

    Article  Google Scholar 

  • Rudolph S., Kusche J. and Ilk K.-H., 2002. Investigations on the polar gap problem in ESA’s gravity field and steady-state ocean circulation explorer mission (GOCE). J. Geodyn., 33, 65–74.

    Article  Google Scholar 

  • Schwarz K.P. and Krynski J., 1977. Improvement of the geoid in local areas by satellite gradiometry. Bull. Geod., 51, 163–176.

    Article  Google Scholar 

  • Šprlák M., Hamácková E. and Novák P., 2015. Alternative validation method of satellite gradiometric data by integral transform of satellite altimetry data. J. Geodesy, 89, 757–773, DOI: 10.1007/s00190-015-0813-5.

    Article  Google Scholar 

  • Steinhage D., Helm V. and Eagles G., 2013. DOMECair 2013 Data Acquisition Report-II. Dome-C Airborne Gravity Measurements and Comparison to GOCE Gradient Data. European Space Agency, Noordwijk, The Netherlands, 15–64 (https://earth.esa.int/documents /10174/134665/DOMECairFinalReport_AcquisitionReport_ESAarchive_Gravity).

    Google Scholar 

  • Tscherning C.C., 1993. Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame. Manuscr. Geod., 18, 115–123.

    Google Scholar 

  • Tscherning C.C. and Rapp R.H., 1974. Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations and Deflections of the Vertical Implied by Degree-Variance Models. Report 208. Department of Geodetic Science, Ohio State University, Columbus, OH.

    Google Scholar 

  • Tscherning C.C., Knudsen P. and Forsberg R., 1994. Description of the GRAVSOFT Package. Technical Report. Geophysical Institute, University of Copenhagen, Copenhagen, Denmark

    Google Scholar 

  • Tscherning C.C., Forsberg R., Albertella A., Migliaccio F. and Sansò F., 2000. The polar gap problem: space-wise approaches to gravity field determination in polar areas. In: Sünkel H. (Ed.), From Eötvös to mGal, Final Report. ESA/ESTEC Contract 13392/98/NL/GD, European Space Agency, Noordwijk, The Netherlands, 331–336.

    Google Scholar 

  • Tóth G., Rózsa S., Ádám J. and Tziavos I.N., 2002. Gravity field modeling by torsion balance data -a case study in Hungary. In: Ádám J. and Schwarz K.P. (Eds.), Vistas for Geodesy in the New Millenium. International Association of Geodesy Symposia, 125, Springer-Verlag, Berlin, Germany, 193–198.

    Chapter  Google Scholar 

  • Tóth G., Ádám J., Földváry L., Tziavos I.N. and Denker H., 2005. Calibration/validation of GOCE data by terrestrial torsion balance observations. In: Sansó F. (Ed.), A Window on the Future Geodesy. International Association of Geodesy Symposia, 128, Springer-Verlag, Berlin, Germany, 214–219.

    Chapter  Google Scholar 

  • van Gelderen M. and Rummel R., 2001. The solution of the general geodetic boundary value problem by least squares. J. Geodesy, 75, 1–11.

    Article  Google Scholar 

  • Visser P., Koop R. and Klees R., 2000. Scientific data production quality assessment. In: Sünkel H. (Ed.), From Eötvös to mGal, Final Report. ESA/ESTEC Contract 13392/98/NL/GD, European Space Agency, Noordwijk, The Netherlands, 157–176.

    Google Scholar 

  • Wolf K.I. and Denker H., 2005. Upward continuation of ground data for GOCE calibration. In: Jekeli C., Bastos L. and Fernandes L. (Eds), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, Springer-Verlag, Berlin, Germany, 60–65.

    Chapter  Google Scholar 

  • Yildiz H., 2012. A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud. Geophys. Geod., 56, 171–184.

    Article  Google Scholar 

  • Zielinsky J.B. and Petrovskaya M.S., 2003. The possibility of the calibration/validation of the GOCE data with the balloon-borne gradiometer. Adv. Geosci., 1, 149–153.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Yildiz.

Additional information

The manuscript solely reflects the personal views of the authors and does not necessarily represent the views, positions, strategies or opinions of Turkish Armed Forces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, H., Forsberg, R., Tscherning, C.C. et al. Upward continuation of Dome-C airborne gravity and comparison with GOCE gradients at orbit altitude in east Antarctica. Stud Geophys Geod 61, 53–68 (2017). https://doi.org/10.1007/s11200-015-0634-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-0634-2

Keywords

Navigation