Skip to main content
Log in

A thermochemical data base for phase equilibria in the system Fe-Mg-Si-O at high pressure and temperature

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A thermochemical data base for phases in the system Fe-Mg-Si-O at high pressures up to 300 kbar is established by supplementing the available calorimetric data with data calculated from experimental high pressure synthesis studies. Phases included in the data base are the SiO2 polymorphs, rock salt solid solutions (Fe-Mg-O), Fe2O3, Fe3O4, (Mg, Fe)2SiO4 olivine, spinel, modified spinel and (Mg, Fe)SiO3 perovskite and pyroxene. Phases not included are the MgSiO3-ilmenite and -garnet. Fe-Mg solution properties of olivine, spinel, perovskite and wustite (rock salt) are estimated. The wüstite solid solution has been modeled as a nonideal solution of three end members; FeO, FeO1.5 and MgO. The new data base is made consistent with most of the available information on high pressure phase studies.

The data base is useful in generating phase diagrams of various different compositions for the purpose of planning new experiments and analysing existing phase synthesis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens TJ, Anderson DL, Ringwood AE (1969) Equations of state and crystal structure of high-pressure phases of shocked silicates and oxides. Rev Geophys 7:667–707

    Google Scholar 

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid solution equilibria in the system Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Google Scholar 

  • Akaogi M, Navrotsky A (1984) The quartz-coesite-stishovite transformations: New calorimetric measurements and calculation of phase diagrams. Phys Earth Planet Inter 36:124–134

    Google Scholar 

  • Akaogi M, Ross NL, McMillan P, Navrotsky A (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel) thermodynamic properties from oxide melt solution calorimetry, phase relations and models of lattice vibrations. Am Mineral 69:499–512

    Google Scholar 

  • Akimoto S (1972) The system MgO-FeO-SiO2 at high pressures and temperatures — Phase equilibria and elastic properties. Tectonophysics 13:161–187

    Google Scholar 

  • Akimoto S, Fujisawa H, Katsura T (1965) Olivine-spinel transition in Fe2SiO4 and Ni2SiO4. J Geophys Res 66:1969–1977

    Google Scholar 

  • Akimoto S, Fujisawa H (1968) Olivine-spinel solid solution equilibria in the system Mg2SiO4-Fe2SiO4. J Geophys Res 73:1467–1473

    Google Scholar 

  • Akimoto S, Komada E, Kushiro I (1967) Effect of pressure on the melting of olivine and spinel polymorphs of Fe2SiO4. J Geophys Res 68:679–686

    Google Scholar 

  • Akimoto S, Matsui Y, Syono Y (1976) High pressure crystal chemistry in orthosilicates and formation of the mantle transition zone, in the Physics and Chemistry of Minerals and Rocks, R J Strens (ed), John Wiley, London, pp 327–363

    Google Scholar 

  • Akimoto S, Syono Y (1970) High-pressure decomposition of the system FeSiO3-MgSiO3. Phys Earth Planet Inter 3:186–188

    Google Scholar 

  • Barin I, Knacke O (1978) Thermochemical properties of inorganic substances. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bell PM, Yagi T, Mao HK (1979) Iron-magnesium distribution coefficients between spinel [(Mg, Fe)2SiO4], magnesiowüstite [(Mg, Fe)O] and perovskite [(Mg, Fe)SiO3]. Carnegie Inst Washington Yearb 78:618–621

    Google Scholar 

  • Berman RG, Brown TH (1985) Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Google Scholar 

  • Bertrand GL, Acree WE Jr, Burchfield T (1983) Thermochemical excess properties of multicomponent systems: representation and estimation from binary mixing data. J Solution Chem 12:327–340

    Google Scholar 

  • Bjorkman B (1984) Quantitative equilibrium calculations on systems with relevance to copper melting and converting. Ph D Thesis, Univ of Umea, Sweden

    Google Scholar 

  • Bohlen SR, Boettcher AL (1982) Experimental investigations and geological applications of olivine-orthopyroxene geobarometry. Am Mineral 66:951–964

    Google Scholar 

  • Brousse C, Newton RC, Kleppa OJ (1984) Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1,073 K determined by alkali borate solution calorimetry. Geochim Cosmochim Acta 48:1081–1088

    Google Scholar 

  • Carmichael RS (1982) Handbook of physical properties of rocks. CRC Press

  • Clark SP Jr (1966) Handbock of physical constants. Mem Geol Soc Am 97

  • Eriksson G (1975) Thermodynamic studies of high temperature equilibria. XII.SOLGASMIX a computer program for calculation of equilibrium compositions in multiphase systems. Chem Scr 8:100–103

    Google Scholar 

  • Fei Y, Saxena SK, Eriksson GE (1986) Silicate solution models. Contrib Mineral Petrol (in press)

  • Ganguly J, Saxena SK (1984) Mixing properties of aluminosilicate garnets: constraints from natural and experimental data and application to geothermobarometry. Am Mineral 69:88–97

    Google Scholar 

  • Goel RP, Kellogg HH, Larrain J (1980) Mathematical description of the thermodynamic properties of the system iron-oxygen and iron-oxygensilica. Metall Trans B 11 B:107–117

    Google Scholar 

  • Guggenheim EA (1967) Thermodynamics. North-Holland Publ Co, Amsterdam

    Google Scholar 

  • Hazen RM, Jeanloz R (1984) Wüstite (Fe1−xO): A review of its defect structure and physical properties. Rev Geophys Space Phys 22:37–46

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:221

    Google Scholar 

  • Hentschel B (1970) Stoichiometric FeO as metastable intermediate of the decomposition of wüstite at 225 C. Z Naturforsch A-25:1996–1997

    Google Scholar 

  • Ito E (1984) Ultra-high pressure phase relations of the system MgO-FeO-SiO2 and their geophysical implications. Materials Science of the Earth's Interior, edited by I Sunagawa, pp 387–394

  • Ito E, Yamada H (1982) Stability relations of silicate spinel ilmenites and perovskites. In: Akimoto S and Manghnani MH (eds) High pressure research in geophysics, pp 405–419

  • Ito E, Takahashi E, Matsui Y (1984) The mineralogy and chemistry of the lower mantle: an implication of the ultrahigh-pressure phase relations in the system MgO-FeO-SiO2. Earth Planet Sci Lett 67:238–248

    Google Scholar 

  • Ito H, Kawada K, Akimoto S (1974) Thermal expansion of stishovite. Phys Earth Planet Inter 8:277–281

    Google Scholar 

  • Jeanloz R, Thompson AB (1983) Phase transitions and mantle discontinuities. Rev Geophys Space Phys 21:51–74

    Google Scholar 

  • Jeanloz R, Hazen RM (1983) Compression, nonstoichiometry and bulk viscosity of wüstite. Nature 304:620–622

    Google Scholar 

  • Kawada K (1977) System Mg2SiO4-Fe2SiO4 at high pressures and temperatures and the earth's interior. Ph D Thesis, Univ of Tokyo, Tokyo, pp 187

    Google Scholar 

  • Kubaschewski O (1982) Iron-binary phase diagrams. Springer, Berlin Heidelberg New York, pp 185

    Google Scholar 

  • Kuskov DL (1979) Equations of state for some substances at very high pressures. Geokhimiya 7:963–983

    Google Scholar 

  • Lindsley DH (1981) The formation of pigeonite on the join heden-bergite-ferrosillite at 11.5 and 15 kbar: experiments and a solution model. Am Mineral 66:1175–1182

    Google Scholar 

  • Lindsley DH, Grover JE, Davidson PM (1981) The thermodynamics of the Mg2Si2O6-CaMgSi2O6 join: a review and an improved model. Adv Phys Geochem 1:149–176

    Google Scholar 

  • Liu L (1976) The high-pressure phases of FeSiO3 with implications for Fe2SiO4 and FeO. Earth Planet Sci Lett 33:101–106

    Google Scholar 

  • Levien L, Prewitt CT (1981) High-pressure crystal structure and compressibility of coesite. Am Mineral 66:324–333

    Google Scholar 

  • Liebermann RC (1976) Elasticity of ilmenite. Phys Earth Planet Inter 12:5–10

    Google Scholar 

  • Liebermann RC, Ringwood AE, Major A (1976) Elasticity of polycrystalline stishovite. Earth Planet Sci Lett 32:127-

    Google Scholar 

  • Liebermann RC, Schreiber E (1968) Elastic constants of polycrystalline hematite as a function of pressure to 3 kbar. J Geophys Res 73:65–86

    Google Scholar 

  • Mao HK (1974) A discussion of the iron oxides at high pressure with implications for the chemical and thermal evolution of the earth. Carnegie Inst Washington Yearb 73:510–518

    Google Scholar 

  • Mao HK, Bell PM (1979) Equations of state of MgO and ɛFe under static pressure conditions. J Geophys Res 84:4533–4536

    Google Scholar 

  • Mao HK, Bell PM (1977) Disproportionation equilibrium in iron-bearing systems at pressures above 100 kbar with applications to chemistry of the earths mantle. In: Saxena SK and Bhattacharji S (eds) Energetics of geological processes. Springer, Berlin Heidelberg New York, pp 236–249

    Google Scholar 

  • Mao HK, Takahashi T, Bassett WA, Kinsland GL, Merrill L (1974) Isothermal compression of magnetite to 320 kbar and pressureinduced phase transformation. J Geophys Res 79:1165–1170

    Google Scholar 

  • Marumo F, Isobe M, Akimoto S (1977) Electron density distributions in crystals for γ-Fe2SiO4 and γ-CO2SiO4. Acta Crystallogr Sect B33:713–716

    Google Scholar 

  • Matsui Y, Syano Y (1968) Unit cell dimensions of some synthetic olivine group solid solutions. Geochem J 2:51–59

    Google Scholar 

  • Mizukami S, Ohtani A, Kawai N (1975) High pressure x-ray diffraction studies on β- and γ-Mg2SiO4. Phys Earth Planet Inter 10:177–182

    Google Scholar 

  • Myers J, Eugster HP (1983) The system Fe-Si-O: Oxygen buffer calibrations to 1,500 K. Contrib Mineral Petrol 82:75–90

    Google Scholar 

  • Nafziger RH, Muan A (1967) Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2. Am Mineral 52:1364–1385

    Google Scholar 

  • Navrotsky A, Akaogi M (1984) The phase relations in systems Fe2SiO4-Mg2SiO4 and CO2SiO4-Mg2SiO4: calculation from thermochemical data and geophysical applications. J Geophys Res 89:10135–10140

    Google Scholar 

  • Navrotsky A, Pintchovsky F, Akimoto S (1979) Calorimetric study of the stability of high pressure phases in the system CaO-SiO2 and “FeO”-SiO2 and calculation of phase diagrams in MO-SiO2 systems. Phys Earth Planet Inter 19:275–292

    Google Scholar 

  • Ostrovsky IA (1979) The thermodynamics of substances at very high pressures and temperatures and some mineral reactions in the earths mantle. Phys Chem Minerals 5:105–118

    Google Scholar 

  • Petit AT, Dulong PL (1819) Recherches sur quelques points important de la theorie de la chalecur. Ann Chim Phys 10:395–413

    Google Scholar 

  • Ringwood AE (1969) Phase transformations in the mantle. Earth Planet Sci Lett 5:401–412

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth's mantle. McGraw-Hill, New York

    Google Scholar 

  • Robie RA, Finch CB, Hemingway BS (1982) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383 K: comparision of calorimetric and equilibrium values for the QFM buffer reaction. Am Mineral 67:463–469

    Google Scholar 

  • Robie RA, Hemingway BS, Takei H (1982) Heat capacities and entropies of Mg2SiO4, Mn2SiO4 and CO2SiO4 between 5 and 380 K. Am Mineral 67:470–482

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Survey Bull 1452

  • Ryzhenko BN, Volkov VP (1971) Fugacity coefficients of some gases in a broad range of temperatures and pressures. Geokhimiya 7:760–773

    Google Scholar 

  • Sato Y (1977) Equation of state of mantle minerals determined through high-pressure x-ray study in highpressure research: Applications in Geophysics, Manghnani MH and Akimoto S (eds), Academic Press, New York, pp 307–323

    Google Scholar 

  • Saxena SK (1973) Thermodynamics of rock-forming crystalline solutions. Springer, Berlin Heidelberg New York, p 189

    Google Scholar 

  • Saxena SK, Eriksson GE (1985) Anhydrous phase equilibria in earth's upper mantle. J Petrol 26:378–390

    Google Scholar 

  • Saxena SK, Chatterjee N (1986) Thermochemical data on mineral phases. 1. The system CaO-MgO-Al2O3-SiO2. J Petrol (in press)

  • Simons B (1980) Composition-lattice parameter relationship of the magnesiowüstite solid solution series. Carnegie Inst Washington Yearb 79:376–380

    Google Scholar 

  • Skinner BJ (1962) Thermal expansion of ten minerals. US Geol Surv Prof Paper 450D:109–112

    Google Scholar 

  • Skinner BJ (1966) Thermal expansion. In: Clark SP Jr (ed) Handbook of physical constants. Geol Soc Am Mem, pp 75–95

  • Smith WR, Missen RW (1982) Chemical reaction equilibrium analysis. Wiley-Interscience, New York, pp 364

    Google Scholar 

  • Soga N (1963) The temperature and pressure deriveratives of isotropic sound velocities of α-quartz. J Geophys Res 73:827–829

    Google Scholar 

  • Stacey FD (1977) Physics of the earth. Wiley, New York, pp 414

    Google Scholar 

  • Striefler ME, Barsch GR (1976) Elastic and optical properties of stishovite. J Geophys Res 81:2453

    Google Scholar 

  • Suito K (1977) Phase relations of pure Mg2SiO4 up to 200 kilobars. In: Manghnani MH and Akimoto S (eds) High pressure research. Academic Press, New York, pp 365

    Google Scholar 

  • Sumino Y, Nishizawa O, Goto T, Ohno I, Ozima (1977) Temperature variation of elastic constants of single-crystal forsterite between 190 and 400 C. J Phys Earth 28:273–280

    Google Scholar 

  • Sumino Y (1979) The elastic constants of Mn2SiO4, Fe2SiO4 and CO2SiO4 and the elastic properties of olivine group minerals at high temperature. J Phys Earth 27:209–238

    Google Scholar 

  • Suzuki I (1975) Thermal expansion of periclase and olivine and their anharmonic properties. J Phys Earth 23:145–159

    Google Scholar 

  • Suzuki I, Ohtani E, Kumazama M (1979) Thermal expansion of γ-Mg2SiO4. J Phys Earth 27:53–61

    Google Scholar 

  • Suzuki I, Ohtani E, Kumazawa M (1980) Thermal expansion of modified spinel, β-Mg2SiO4. J Phys Earth 28:273–280

    Google Scholar 

  • Suzuki I, Seya K, Takei H, Sumino Y (1981) Thermal expansion of fayalite, Fe2SiO4. Phys Chem Mineral 7:60–63

    Google Scholar 

  • Syono Y, Akimoto S, Matsui Y (1971) High pressure transformations in zinc silicates. J Solid State Chem 3:369–380

    Google Scholar 

  • Thompson JB Jr, Waldbaum DR (1969) Mixing properties of sanidine crystalline solutions: Calculations based on two-phase data. Am Mineral 54:811–838

    Google Scholar 

  • Watt JP, Ahrens TJ (1982) The role of iron partitioning in mantle composition evolution and scale of convection. J Geophys Res 87:5631–5644

    Google Scholar 

  • Weidner DJ, Wang H, Ito J (1978) Elasticity of orthoenstatite. Phys Earth Planet Inter 17:7

    Google Scholar 

  • Wood BJ, Kleppa OJ (1981) Thermochemistry of forsterite-fayalite olivine solutions. Geochim Cosmochim Acta 45:529–534

    Google Scholar 

  • Watanabe H (1982) Thermochemical properties of synthetic high-pressure compounds relevant to the earths mantle. In: Akimoto S and Manghnani MH (eds) High pressure research in geophysics, pp 441–464

  • Weaver JS, Chipman DW, Takahashi T (1979) Comparison between thermochemical and phase stability data for the quartz-coesite-stishovite transformations. Am Mineral 64:604–614

    Google Scholar 

  • Yagi T, Mao HK, Bell PM (1982) Hydrostatic compression of perovskite type MgSiO3. In: Advances in Phys Geochem Vol 2, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Yagi T, Akimoto S (1976) Direct determination of coesite-stishovite transition by in-situ x-ray measurements. Tectonophysics 35:259–270

    Google Scholar 

  • Yagi T, Bell PM, Mao HK (1979) Phase relations in the system MgO-FeO-SiO2 between 150 and 700 kbar at 1,000 °C. Carnegic Inst Washington Yearb 78:614–618

    Google Scholar 

  • Yagi T, Mao HK, Bell PM (1978a) Effect of iron on the stability and unit-cell parameters of ferromagnesian silicate perovskite. Carnegie Inst Washington Yearb 77:837–841

    Google Scholar 

  • Yagi T, Mao HK, Bell PM (1978b) Structure and crystal chemistry of perovskite-type MgSiO3. Phys Chem Minerals 3:97–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, Y., Saxena, S.K. A thermochemical data base for phase equilibria in the system Fe-Mg-Si-O at high pressure and temperature. Phys Chem Minerals 13, 311–324 (1986). https://doi.org/10.1007/BF00308348

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308348

Keywords

Navigation