Skip to main content

Advertisement

Log in

Subfossil markers of climate change during the Roman Warm Period of the late Holocene

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Abundant bog oak trunks occur in alluvial deposits of the Raba River in the village of Targowisko (southern Poland). Several of them contain galleries of the great capricorn beetle (Cerambyx cerdo L.). A well-preserved subfossil larva and pupa, as well as adults of this species, are concealed in some of the galleries. These galleries co-occur with boring galleries of other insects such as ship-timber beetles (Lymexylidae) and metallic wood borers (Buprestidae). A dry larva of a stag beetle (Lucanidae) and a mite (Acari) have been found in the C. cerdo galleries. Selected samples of the trunks and a sample of the C. cerdo larva were dated, using radiocarbon and dendrochronological methods, to the period from 45 bc to ad 554; one sample was dated to the period from 799 to 700 bc. Accumulation of the channel alluvia containing the bog oak trunks is synchronous with the Roman Warm Period (late antiquity/Early Mediaeval times). The most recent part of this period correlates with massive accumulations of fallen oak trunks noted from various river valleys in the Carpathian region and dated to ad 450–570. The results indicate that C. cerdo was more abundant within the study area during the Roman Warm Period than it is today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert J, Platek M, Cizek L (2012) Vertical stratification and microhabitat selection by the great capricorn beetle (Cerambyx cerdo) (Coleoptera: Cerambycidae) in open-grown, veteran oaks. Eur J Entomol 109(4):553–559. https://doi.org/10.14411/eje.2012.069

    Article  Google Scholar 

  • Alexandrowicz SW (1961) Stratigraphy of Chodenice and Grabowiec beds at Chełm on the Raba River. Kwartalnik Geologiczny 5:646–667

    Google Scholar 

  • Armstrong W, Brändle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43(4):307–358. https://doi.org/10.1111/j.1438-8677.1994.tb00756.x

    Article  CAS  Google Scholar 

  • Becker B (1982) Dendrochronologie und Paläoökologie subfossiler Baumstämme aus Flussablagerungen, ein Beitrag zur nacheiszeitlichen Auenentwicklung im südlichen Mitteleuropa. Österreichische Akademie der Wissenschaften: Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 5, Vienna

  • Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51(01):337–360. https://doi.org/10.1017/S0033822200033865

    Article  Google Scholar 

  • Buse J, Schröder B, Assmann T (2007) Modelling habitat and spatial distribution of an endangered longhorn beetle—a case study for saproxylic insect conservation. Biol Conserv 137(3):372–381. https://doi.org/10.1016/j.biocon.2007.02.025

    Article  Google Scholar 

  • Buse J, Ranius T, Assmann T (2008) An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Biol Conserv 22(2):329–337. https://doi.org/10.1111/j.1523-1739.2007.00880.x

    Article  CAS  Google Scholar 

  • Chaloner WG, Scott AC, Stephenson J, Jarzembowski EA, Alexander RMCN, Collinson ME (1991) Fossil evidence for plant-arthropod interactions in the Paleozoic and Mesozoic [and discussion]. Philos Trans R Soc Lond 333(1267):177–186. https://doi.org/10.1098/rstb.1991.0066

    Article  Google Scholar 

  • Corella JP, Stefanova V, El Anjoumi A, Rico E, Giralt S, Moreno A, Plata-Montero A, Valero-Garcés BL (2013) A 2500-year multi-proxy reconstruction of climate change and human activities in northern Spain. The Lake Arreo record Palaeogeogr Palaeoclimatol Palaeoecol 386:555–568. https://doi.org/10.1016/j.palaeo.2013.06.022

    Article  Google Scholar 

  • Czernik J, Goslar T (2001) Preparation of graphite targets in the Gliwice Radiocarbon Laboratory for AMS (super 14) C dating. Radiocarbon 43(2A):283–291. https://doi.org/10.1017/S0033822200038121

    Article  Google Scholar 

  • Desprat S, Goñi MFS, Loutre M-F (2003) Revealing climatic variability of the last three millennia in northwestern Iberia using pollen influx data. Earth Planet Sci Lett 213(1-2):63–78. https://doi.org/10.1016/S0012-821X(03)00292-9

    Article  CAS  Google Scholar 

  • Dobrzańska H, Kalicki T (2015) Morphology and land use of floodplains in the western part of Sandomierz Basin (southern Poland, Central Europe) in the Roman period. Quat Int 370:100–112. https://doi.org/10.1016/j.quaint.2014.12.060

    Article  Google Scholar 

  • Dominik J, Starzyk JR (2004) Owady uszkadzające drewno. PWRiL, Warszawa

    Google Scholar 

  • Duffy EAJ (1968) The status of Cerambyx L. (Col., Cerambycidae) in Britain. Entomologist’s Gazette 19:161–166

  • Gębica P, Jacyszyn A, Krąpiec M, Budek A, Czumak N, Starkel L, Andrejczuk W, Ridush B (2016) Stratigraphy of alluvia and phases of the Holocene floods in the valleys of the eastern Carpathians foreland. Quat Int 415:55–66. https://doi.org/10.1016/j.quaint.2015.11.088

    Article  Google Scholar 

  • Godwin H (1975) The history of the British flora: a factual basis for phytogeography, second edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Goslar T, Czermik J, Goslar E (2004) Low-energy 14C AMS in Poznań Radiocarbon Laboratory. Nucl Instrum Methods Phys Res 223–224:5–11

    Article  Google Scholar 

  • Gurnell AM, Piegay H, Swanson FJ, Gregory SV (2002) Large wood and fluvial processes. Freshw Biol 47(4):601–619. https://doi.org/10.1046/j.1365-2427.2002.00916.x

    Article  Google Scholar 

  • Harding PT, Plant RA (1978) A second record of Cerambyx cerdo L. (Coleoptera: Cerambycidae) from sub-fossil remains in Britain. Entomologist’s Gazette 29:150–152

    Google Scholar 

  • Horák J, Büche B, Dodelin B, Alexander K, Schlaghamersky J, Mason F, Istrate P, Méndez M (2010) Cerambyx cerdo. The IUCN Red List of Threatened Species. Version 2014.3. https://www.iucnredlist.org

  • Kadej M, Zając K, Smolis A, Tarnawski D, Tyszecka K, Malkiewicz A, Pietraszko M, Warchałowski M, Gil R (2017) The great capricorn beetle Cerambyx cerdo L. in south-western Poland—the current state and perspectives of conservation in one of the recent distribution centres in Central Europe. In: Campanaro A, Hardersen S, Sabbatini Peverieri G, Maria Carpaneto G (eds) Monitoring of saproxylic beetles and other insects protected in the European Union. Nature Conservation, vol 19, pp 111–134

    Google Scholar 

  • Kalicki T, Krąpiec M (1995) Problems of dating alluvium using buried subfossil tree trunks: lessons from the ‘black oaks’ of the Vistula Valley, Central Europe. The Holocene 5(2):243–250. https://doi.org/10.1177/095968369500500213

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28(27-28):3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028

    Article  Google Scholar 

  • Krawczyk A, Krąpiec M (1995) Dendrochronological database. Proceedings of the Second Polish Conference on Computer Assistance to Scientific Research. Wrocław, pp 247–252

  • Krąpiec M (1996) Dendrochronology of “black oaks” from river valleys in southern Poland. Geogr Stud Spec Issue 9:61–78

    Google Scholar 

  • Krąpiec M (1998) Oak dendrochronology of the Neoholocene in Poland. Folia Quat 69:5–134

    Google Scholar 

  • Krąpiec M (2001) Holocene dendrochronological standards for subfossil oaks from the area of southern Poland. Studia Quat 18:47–63

    Google Scholar 

  • Krąpiec M, Danek M (2003) Dendrochronology of subfossil oak from the gravel pit in Kłaj (Raba valley). Prace Komisji Paleogeografii Czwartorzędu Polskiej Akademii Umiejętności:73–77

  • Krąpiec M, Walanus A (2011) Application of the triple-photomultiplier liquid spectrometer Hidex 300SL in radiocarbon dating. Radiocarbon 53(03):543–550. https://doi.org/10.1017/S0033822200034640

    Article  Google Scholar 

  • Leuschner HH, Sass-Klaassen U, Jansma E, Baillie MG, Spurk M (2002) Subfossil European bog oaks: population dynamics and long-term growth depressions as indicators of changes in the Holocene hydro-regime and climate. The Holocene 12(6):695–706. https://doi.org/10.1191/0959683602hl584rp

    Article  Google Scholar 

  • Matthews JA, Briffa KR (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr Ann Ser Phys Geogr 87:17–36

    Article  Google Scholar 

  • Napierała A, Błoszyk J (2013) Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari: Mesostigmata). Exp Appl Acarol 60(2):163–180. https://doi.org/10.1007/s10493-013-9659-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Groots PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning S, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(04):1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

    Article  CAS  Google Scholar 

  • Rinn F (2005) TSAP-WIN. Time series analysis and presentation for dendrochronology and related applications. Version 0.53 for Microsoft Windows. User Reference

  • Rădoane M, Nechita C, Chiriloaei F, Rădoane N, Popa I, Roibu C, Robu D (2015) Late Holocene fluvial activity and correlations with dendrochronology of subfossil trunks: case studies of northeastern Romania. Geomorphology 239:142–159. https://doi.org/10.1016/j.geomorph.2015.02.036

    Article  Google Scholar 

  • Sallé A, Nageleisen L-M, Lieutier F (2014) Bark and wood boring insects involved in oak declines in Europe: current knowledge and future prospects in a context of climate change. For Ecol Manag 328:79–93. https://doi.org/10.1016/j.foreco.2014.05.027

    Article  Google Scholar 

  • Schott C (1984) Cerambyx cerdo dans des bois fossiles. Bulletin de la Société Entomologique de Mulhouse 48

  • Schweingruber FH (1989) Tree rings—basics and applications of dendrochronology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Skarpaas O, Diserud OH, Sverdrup-Thygeson A, Ødegaard F (2011) Predicting hotspots for red-listed species: multivariate regression models for oak-associated beetles. Insect Conserv Diver 4(1):53–59. https://doi.org/10.1111/j.1752-4598.2010.00109.x

    Article  Google Scholar 

  • Skripkin VV, Kovalyukh NN (1994) An universal technology for oxidation of carbon-containing materials for radiocarbon dating. In: The conference on geochronology and dendrochronology of old town’s and radiocarbon dating of archaeological findings. 31 October–4 November1994, Vilnius, Lithuania, pp 37–42

  • Stachowiak M (2004) 1088 Kozioróg dębosz Cerambyx cerdo Linnaeus, 1758. In: Adamski P, Bartel R, Bereszyński A, Kepel A Witkowski Z (eds) Gatunki zwierząt (z wyjątkiem ptaków). Poradnik ochrony siedlisk i gatunków Natura 2000 – podręcznik metodyczny. T.6. Ministerstwo Środowiska, Warszawa, pp 82–87

  • Stachowiak M (2012) 1088 Kozioróg dębosz Cerambyx cerdo Linnaeus, 1758. In: Makomaska-Juchiewicz M and Baran P (eds) Monitoring gatunków zwierząt. Przewodnik metodyczny. Część II. GIOŚ, Warszawa, pp 349–366

  • Starkel L, Michczyńska DJ, Krąpiec M, Margielewski W, Nalepka D, Pazdur A (2013) Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria 40(1):1–21. https://doi.org/10.2478/s13386-012-0024-2

    Article  Google Scholar 

  • Starkel L, Gębica P, Budek A, Krąpiec M, Jacyšyn A, Kalinovyč N (2009) Evolution of the lower section of the Strvyaž river valley during the Holocene (foreland of the eastern Carpathians). Studia Geomorphologica Carpatho-Balcanica 43:5–37

    Google Scholar 

  • Starzyk JR (1979) Cerambycidae communities (Col., Cerambycidae) occurring in various phytosociological forest types of Niepołomice Forest near Kraków. Z Angew Entomol 88:44–55

    Article  Google Scholar 

  • Stenger F (2012) Reconstruction of ancient floodplain oaks on the base of subfossil oaks. In: Helle G, Gärtner H, Beck W, Heinrich I, Heußner K-U, Müller A, Sanders T (eds) TRACE tree rings in archaeology, climatology and ecology. Proceedings of the Dendrosymposium 2012: May 8th–12th, 2012, in Potsdam and Eberswalde, Germany, pp 117–125

  • Swierczynski T, Lauterbach S, Dulski P, Delgado J, Merz B, Brauer A (2013) Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria). Quat Sci Rev 80:8–90

    Article  Google Scholar 

  • Tegel W, Elburg R, Hakelberg D, Stauble H, Buntgen U (2012) Early Neolithic water wells reveal the world’s oldest wood architecture. PLoS One 7(12):e51374. https://doi.org/10.1371/journal.pone.0051374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomsen M, Krog H (1949) Cerambyx cerdo L. (= heros Scop.) fra subboreal Tid i Danmark. Videnskabelige Meddelelser fra Dansk naturhistorisk Förening i Kjøbenhavn 111:143–148

    Google Scholar 

  • Whitehouse NJ (2006) The Holocene British and Irish ancient forest fossil beetle fauna: implications for forest history, biodiversity and faunal colonization. Quat Sci Rev 25(15-16):1755–1789. https://doi.org/10.1016/j.quascirev.2006.01.010

    Article  Google Scholar 

  • Zielski A, Krąpiec M (2004) Dendrochronologia (Dendrochronology). PWN, Warszawa

    Google Scholar 

Download references

Acknowledgements

We especially wish to thank R. Paw for providing much of the data that made this work possible. The authors wish to acknowledge the generous cooperation of Z. Miąsko (gravel pit operator) who permitted access to the gravel pit property. We are also grateful to the gravel pit staff for their kind cooperation during this study. We thank R. P. Banyś and M. Urbańczyk-Zawadzka from the Radiology Department of John Paul II Hospital for their help and expert technical assistance with CT scans. We would like to thank J. Błoszyk (Department of General Zoology, Adam Mickiewicz University) for identification of the mite Oodinychus ovalis and R. Laskowski (Department of Ecotoxicology, Jagiellonian University) for information on his observations of C. cerdo in Niepołomice Forest. We would also like to especially thank the three anonymous reviewers, along with Ewa Stworzewicz, Katarzyna Maj-Szeliga, and Michał Gradziński, for their valuable comments, suggestions, and help.

Funding

The authors received a support from the Jagiellonian University (RJ: K/ZDS/007303; SK: K/ZDS/006320; AU: K/ZDS/007305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Jach.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Appendix S1

Interactive 3D image of a digital reconstruction of a C. cerdo adult inside a gallery dated from the Roman Warm Period (ad 344–536; sample INGUJ254P5). (MPG 7884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jach, R., Knutelski, S., Uchman, A. et al. Subfossil markers of climate change during the Roman Warm Period of the late Holocene. Sci Nat 105, 6 (2018). https://doi.org/10.1007/s00114-017-1533-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-017-1533-x

Keywords

Navigation