Skip to main content

Advertisement

Log in

Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A1-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a <3 kbar pressure. The Tertiary suite of intra-plate, mantle-derived A1-type granites and syenites is geochemically distinct from pre-Tertiary, post-orogenic A2-type granites of the Carpatho–Pannonian region, which exhibit geochemical features diagnostic of crustal melting along continental margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Åmli R, Griffin WL (1975) Standards and correction factors for microprobe analysis of REE minerals. Am Mineral 60:599–606

    Google Scholar 

  • Atencio D, Andrade MB, Christy AG, Gieré R, Kartashov PM (2010) The pyrochlore supergroup of minerals: nomenclature. Can Mineral 48:673–698

    Article  Google Scholar 

  • Boehnke P, Watson BE, Trail D, Harrison MT, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Article  Google Scholar 

  • Bonin B, Sørensen H (2003) The granites of the Mykle region in the southern part of the Oslo igneous province, Norway. NGU Bull 441:17–24

    Google Scholar 

  • Bouseily AM, Sokkary AA (1975) The relation between Rb, Ba and Sr in granitic rocks. Chem Geol 16:207–219

    Article  Google Scholar 

  • Broska I, Uher P (2001) Whole-rock chemistry and genetic typology of the West-Carpathian Variscan granites. Geol Carpath 52:79–90

    Google Scholar 

  • Broska I, Williams CT, Uher P, Konečný P, Leichmann J (2004) The geochemistry of phosphorus in different granite suites of the Western Carpathians, Slovakia: the role of apatite and P-bearing feldspar. Chem Geol 205:1–15

    Article  Google Scholar 

  • Černý P, Ercit TS (1989) Mineralogy of niobium and tantalum: crystal chemical relationships, paragenetic aspects and their economic implications. In: Möller P, Černý P, Saupé F (eds) Lanthanides, tantalum and niobium. Springer, Heidelberg, pp 27–79

    Google Scholar 

  • Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Chudík P, Uher P (2009) Pyrochlore-group minerals from granite pegmatites of Western Carpathians: compositional variations and substitution mechanisms. Miner Slov 41:159–168 (in Slovak)

    Google Scholar 

  • Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Article  Google Scholar 

  • Connolly JAD (1992) Elementary phase diagrams: principles and methods. In: Pressure and temperature evolution of orogenic belts. 5th Summer School, Geologia e Petrologia dei Basamenti Cristallini. University of Siena and Italian National Research Council, Italy, pp 203–220

  • Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11:379–388

    Article  Google Scholar 

  • Dérerová J, Zeyen H, Bielik M, Salman K (2006) Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics 25:TC3009

    Article  Google Scholar 

  • Dianiška I, Uher P, Hurai V, Huraiová M, Frank W, Konečný P, Kráľ J (2007) Mineralization of rare-metal granites. In: Hurai V (ed) Source of fluids and origin of mineralizations of the Gemeric Unit. Geological Project 0503: source of fluids and metallogenesis of Western Carpathians. State Geological Institute of D. Štúr and Ministry of Environment of the Slovak Republic, Bratislava

  • Dobosi G, Fodor RV, Goldberg SA (1995) Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationships to tectonics. Acta Vulcanol 7:189–198

    Google Scholar 

  • Downes H, Vaselli O (1995) The lithospheric mantle beneath the Carpathian–Pannonian Region: a review of trace element and isotopic evidence from ultramafic xenoliths. Acta Vulcanol 7:219–229

    Google Scholar 

  • Duan Z, Møller N, Weare J (1995) Equation of state for NaCl–H2O–CO2 system: prediction of phase equilibria and volumetric properties. Geochim Cosmochim Acta 59:2869–2882

    Article  Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134

    Article  Google Scholar 

  • Eby GN (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20:641–644

    Article  Google Scholar 

  • Embey-Isztin A, Downes H, Kempton P, Dobosi G, Thirlwall M (2003) Lower crustal granulite xenoliths from the Pannonian Basin, Hungary. Part 1: mineral chemistry, thermobarometry and petrology. Contrib Mineral Petrol 144:652–670

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52:39–55

    Article  Google Scholar 

  • Frost BR, Arculus RJ, Barnes CG, Collins W, Ellis DJ, Frost CD (2001) A geochemical classification of granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Grantham GH, Mendonidis P, Thomas RJ, Satish-Kumar M (2012) Multiple origins of charnockite in the Mesoproterozoic Natal belt, Kwazulu-Natal, South Africa. Geosci Front 3:755–771

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Article  Google Scholar 

  • Hatert F, Burke EAJ (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. Can Mineral 46:717–728

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircon to unravel the record of crustal evolution. Chem Geol 226:144–162

    Article  Google Scholar 

  • Hirtopanu P, Andersen J, Fairhurst R (2010) Nb, Ta, REE(Y), Ti, Zr, Th, U and Te rare element minerals within the Ditrău alkaline intrusive complex, Eastern Carpathians, Romania. In: Szakáll S, Kristály F (eds) Mineralogy of Székelyland, Eastern Transylvania, Romania. Csik County Nature and Conservation Society, Miercurea Ciuc, pp 89–128

    Google Scholar 

  • Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals. 2. Symmetric formalism applied to solid solutions. Am Mineral 81:1425–1437

    Article  Google Scholar 

  • Holland T, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holland T, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42:673–683

    Article  Google Scholar 

  • Hovorka D, Fejdi P (1980) Spinel peridotite xenoliths in West Carpathian late tectonic alkali basalts and their tectonic significance. Bull Volcanol 43:95–105

    Article  Google Scholar 

  • Hurai V, Simon K, Wiechert U, Hoefs J, Konečný P, Huraiová M, Pironon J, Lipka J (1998) Immiscible separation of metalliferous Fe/Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning. Contrib Mineral Petrol 133:12–29

    Article  Google Scholar 

  • Hurai V, Huraiová M, Konečný P, Thomas R (2007) Mineral-melt-fluid composition of carbonate-bearing cumulate xenoliths in Tertiary alkali basalts of southern Slovakia. Mineral Mag 71:63–79

    Article  Google Scholar 

  • Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J Volcanol Geotherm Res 198:275–287

    Article  Google Scholar 

  • Hurai V, Huraiová M, Milovský R, Luptáková J, Konečný P (2013) High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt. Am Mineral 98:1074–1077

    Article  Google Scholar 

  • Hurai V, Huraiová M, Slobodník M, Thomas R (2015) Geofluids. Developments in microthermometry, spectroscopy, thermodynamics, and stable isotopes. Elsevier, Amsterdam

    Google Scholar 

  • Huraiová M, Konečný P (1994) Pressure-temperature conditions and oxidation state of the upper mantle in southern Slovakia. Acta Geol Hung 37:33–44

    Google Scholar 

  • Huraiová M, Konečný P (2006) U–Pb–Th dating and chemical composition of monazite from syenite and pincinite xenoliths from the Late Miocene maar near Pinciná. Miner Slov 38:141–150 (in Slovak)

    Google Scholar 

  • Huraiová M, Konečný P, Konečný V, Simon K, Hurai V (1996) Mafic and salic igneous xenoliths in Late Tertiary alkaline basalts: fluid inclusion and mineralogical evidence for a deep-crustal magmatic reservoir in the Western Carpathians. Eur J Mineral 8:901–916

    Article  Google Scholar 

  • Huraiová M, Dubessy J, Konečný P, Simon K, Kráľ J, Zielinski G, Lipka J, Hurai V (2005) Glassy orthopyroxene granodiorites of the Pannonian Basin: tracers of ultra-high-temperature deep-crustal anatexis triggered by Tertiary basaltic volcanism. Contrib Mineral Petrol 148:615–633

    Article  Google Scholar 

  • Huraiová M, Konečný P, Hurai V (2007) Chevkinite-(Ce)—REE-Ti silicate from syenite xenoliths in the Pinciná basaltic maar near Lučenec (Southern Slovakia). Miner Slov 39:255–268 (in Slovak)

    Google Scholar 

  • Huraiová M, Konečný P, Holický I, Milovská S, Nemec O, Hurai V (2017) Mineralogy and origin of peralkaline granite-syenite nodules ejected in Pleistocene basalt from Bulhary, southern Slovakia. Period Mineral 86:1–17

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Kempton PD, Downes H, Embey-Isztin A (1997) Mafic granulite xenoliths in Neogene alkali basalts from the Western Pannonian basin: insights into lower crust of a collapsed orogen. J Petrol 38:941–970

    Article  Google Scholar 

  • Kilpatrick JA, Ellis DJ (1992) C-type magmas: igneous charnockites and their intrusive equivalents. Trans R Soc Edinb Earth Sci 83:155–164

    Article  Google Scholar 

  • King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. J Petrol 38:371–391

    Article  Google Scholar 

  • Konečný V (2007) Palaeogeographical reconstruction, volcanology and time evolution of the Cerova basalt formation. In: Vass D, Elečko M, Konečný V (eds) Geology of Lučenec depression and Cerova highlands. Štátny geologický ústav D. Štúra, Bratislava, pp 196–202 (in Slovak)

    Google Scholar 

  • Konečný P, Konečný V, Lexa J, Huraiová M (1995a) Mantle xenoliths in alkali basalts of southern Slovakia. Acta Vulcanol 7:241–247

    Google Scholar 

  • Konečný V, Lexa J, Balogh K, Konečný P (1995b) Alkali basalt volcanism in Southern Slovakia: volcanic forms and time evolution. Acta Vulcanol 7:167–172

    Google Scholar 

  • Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105–123

    Article  Google Scholar 

  • Konečný P, Siman P, Holický I, Janák M, Kollárová V (2004) Method of monazite dating by means of the microprobe. Miner Slov 36:225–235 (in Slovak)

    Google Scholar 

  • Kovács I, Szabó C (2005) Petrology and geochemistry of granulite xenoliths beneath the Nógrád–Gömör Volcanic Field, Carpathian–Pannonian Region (N-Hungary/S-Slovakia). Mineral Petrol 85:269–290

    Article  Google Scholar 

  • Kovács I, Zajacz Z, Szabó C (2004) Type-II xenoliths and related metasomatism from the Nógrád–Gömör Volcanic Field, Carpathian–Pannonian region (northern Hungary–southern Slovakia). Tectonophysics 393:139–161

    Article  Google Scholar 

  • Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Geol Soc Am Abstr Progr II:468

    Google Scholar 

  • Lowenstern JB, Clynne MA, Bullen TD (1997) Comagmatic A-type granophyre and rhyolite from the Alid Volcanic Center, Eritrea, Northeast Africa. J Petrol 38:1707–1721

    Article  Google Scholar 

  • Mackay DAR, Simandl GJ (2015) Pyrochlore and columbite-tantalite as indicator minerals for specialty metal deposits. Geochem Explor Environ Anal 15:167–178

    Article  Google Scholar 

  • Magna T, Janoušek V, Kohút M, Oberli F, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274:94–107

    Article  Google Scholar 

  • Middlemost AK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Morogan V, Upton BGJ, Fitton JG (2000) The petrology of the Ditrau alkaline complex, Eastern Carpathians. Mineral Petrol 69:227–265

    Article  Google Scholar 

  • Nemcok M, Pospisil L, Lexa J, Donelick RA (1998) Tertiary subduction and slab break-off model of the Carpathian–Pannonian region. Tectonophysics 295:307–340

    Article  Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44:933–941

    Article  Google Scholar 

  • Ondrejka M (2004) A-type rhyolites of Silicicum in the continental rifting environment of Western Carpathians: geochemistry, mineralogy, petrology. PhD thesis, Faculty of Sciences, Comenius University, Bratislava (in Slovak)

  • Ondrejka M, Uher P, Pršek J, Ozdín D (2007) Arsenian monazite-(Ce) and xenotime-(Y), REE arsenates and carbonates from the Tisovec-Rejkovo rhyolite, Western Carpathians, Slovakia: composition and substitutions in the (REE, Y)XO4 system (X = P, As, Si, Nb, S). Lithos 95:116–129

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Peccerillo R, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Petrík I (2000) Multiple sources of the West-Carpathian Variscan granitoids: a review of Rb/Sr and Sm/Nd data. Geol Carpath 51:145–158

    Google Scholar 

  • Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In: Heinrich KFJ, Newbury D (eds) Electron probe quantitation. Plenum Press, New York, pp 31–76

    Chapter  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    Article  Google Scholar 

  • Shand SJ (1943) Eruptive rocks. Their genesis, composition, classification, and their relation to ore deposits, with a chapter on meteorite. Wiley, New York

    Google Scholar 

  • Shao F, Niu Y, Regelous M, Zhu D-Ch (2015) Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia. Lithos 216–217:196–210

    Article  Google Scholar 

  • Shellnutt JG, Zhou M-F (2007) Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume. Chem Geol 243:286–316

    Article  Google Scholar 

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Phys Chem Ref Data 25:1509–1596

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, vol 42. Geological Society Special Publications, London, pp 313–345

    Google Scholar 

  • Szabó C, Taylor L (1994) Mantle petrology and geochemistry beneath the Nógrád–Gömör volcanic field, Carpathian–Pannonian region. Int Geol Rev 36:328–358

    Article  Google Scholar 

  • Szabó C, Harangi S, Vaselli O, Downes H (1995) Temperature and oxygen fugacity in peridotite xenoliths from the Carpathian–Pannonian region. Acta Vulcanol 7:231–239

    Google Scholar 

  • Tašárová A, Afonso JC, Bielik M, Götze H-J, Hók J (2009) The lithospheric structure of the Western Carpathian–Pannonian Basin region based on the CELEBRATION2000 seismic experiment and gravity modeling. Tectonophysics 475:454–469

    Article  Google Scholar 

  • Tera F, Wasserburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem 74:1–153

    Article  Google Scholar 

  • Uher P, Pushkarev Yu (1994) Granitic pebbles of the Cretaceous flysch of the Pieniny Klippen Belt, Western Carpathians: U/Pb zircon ages. Geol Carpath 45:375–378

    Google Scholar 

  • Uher P, Černý P, Chapman R, Határ J, Miko O (1998) Evolution of Nb, Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. II. External hydrothermal Pb,Sb-overprint. Can Mineral 36:535–545

    Google Scholar 

  • Uher P, Ondrejka M, Konečný P (2009) Magmatic and post-magmatic Y–REE–Th phosphate, silicate and Nb–Ta–Y–REE oxide minerals in A-type metagranite: an example from the Turčok massif, the Western Carpathians, Slovakia. Mineral Mag 73:1009–1025

    Article  Google Scholar 

  • Wang C, Chen L, Bagas L, Lu Y, He X, Lai X (2016) Characterization and origin of the Taishanmiao aluminous A-type granites: implications for early Cretaceous lithospheric thinning at the southern margin of the North China Craton. Int J Earth Sci 105:1563–1589

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB, Worley BA (2000) The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 18:497–511

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153

    Article  Google Scholar 

  • Wilkinson JFG, Taylor SR (1980) Trace element fractionation trends of tholeiitic magma at moderate pressure: evidence from Al-spinel ultramafic-mafic inclusion suite. Contrib Mineral Petrol 75:225–233

    Article  Google Scholar 

  • Wu C, Yuan Z, Bai G (1996) Rare earth deposits in China. In: Jones AP, Wall F, Willimas CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman and Hill, London, pp 281–310

    Google Scholar 

  • Zajacz Z, Szabó C (2003) Origin of sulfide inclusions in cumulate xenoliths from Nógrád–Gömör Volcanic Field, Pannonian Basin (north Hungary/south Slovakia). Chem Geol 194:105–117

    Article  Google Scholar 

  • Zajacz Z, Kovács I, Szabó C, Halter W, Pettke T (2007) Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusions study of olivine-clinopyroxene xenoliths, northern Hungary. J Petrol 48:853–883

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Regional Development Fund under the project of the Centre of Excellence for Integrated Research of the Earth’s Geosphere (ITMS-26220120064). Preliminary version of this paper strongly benefited from constructive reviews of B. Bonin and an unknown reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vratislav Hurai.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huraiová, M., Paquette, JL., Konečný, P. et al. Geochemistry, mineralogy, and zircon U–Pb–Hf isotopes in peraluminous A-type granite xenoliths in Pliocene–Pleistocene basalts of northern Pannonian Basin (Slovakia). Contrib Mineral Petrol 172, 59 (2017). https://doi.org/10.1007/s00410-017-1379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1379-4

Keywords

Navigation