Skip to main content
Log in

Long-term water table manipulations alter peatland gaseous carbon fluxes in Northern Michigan

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Northern peatland water table position is tightly coupled to carbon (C) cycling dynamics and is predicted to change from shifts in temperature and precipitation patterns associated with global climate change. However, it is uncertain how long-term water table alterations will alter C dynamics in northern peatlands because most studies have focused on short-term water table manipulations. The goal of our study was to quantify the effect of long-term water table changes (~80 years) on gaseous C fluxes in a peatland in the Upper Peninsula of Michigan. Chamber methods were utilized to measure ecosystem respiration (ER), gross primary production (GPP), net ecosystem exchange (NEE), and methane (CH4) fluxes in a peatland experiencing levee induced long-term water table drawdown and impoundment in relation to an unaltered site. Inundation raised water table levels by approximately ~10 cm and resulted in a decrease in ER and GPP, but an increase of CH4 emissions. Conversely, the drained sites, with water table levels ~15 cm lower, resulted in a significant increase in ER and GPP, but a decrease in CH4 emissions. However, NEE was not significantly different between the water table treatments. In summary, our data indicates that long-term water table drawdown and inundation was still altering peatland gaseous C fluxes, even after 80 years. In addition, many of the patterns we found were of similar magnitude to those measured in short-term studies, which indicates that short-term studies might be useful for predicting the direction and magnitude of future C changes in peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R, Ludwig F (1997) Water-table changes and nutritional status affect trace gas emissions from laboratory columns of peatland soils. Soil Biol Biochem 29:1691–1698

    Article  CAS  Google Scholar 

  • Alm J, Schulman L, Silvola J, Walden J, Nykanen H, Martikainen PJ (1999) Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80:161–174

    Article  Google Scholar 

  • Bellisario LM, Bubier JL, Moore TR, Chanton JP (1999) Controls on CH4 emissions from a northern peatland. Global Biogeochem Cycles 13:81–91

    Article  CAS  Google Scholar 

  • Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351

    Article  CAS  Google Scholar 

  • Boelter DH, Verry ES (1977) Peatland and water in the northern Lake States. USDA, Forest Service, North Central Forest Experiment Station, St Paul, MN. General Technical Report NC-31, p 26

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582

    Article  CAS  PubMed  Google Scholar 

  • Cai TEB, Flanagan LB, Syed KH (2010) Warmer and drier conditions stimulate respiration more than photosynthesis in a boreal peatland ecosystem: analysis of automatic chambers and eddy covariance measurements. Plant Cell Environ 33:394–407

    Article  CAS  PubMed  Google Scholar 

  • Carroll P, Crill P (1997) Carbon balance of a temperate poor fen. Global Biogeochem Cycles 11:349–356

    Article  CAS  Google Scholar 

  • Chanton JP, Glaser PH, Chasar LS, Burdige DJ, Hines ME, Siegel DI (2008) Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochem Cycles 22:GB4022. doi:10.1029/2008GB003274

    Article  Google Scholar 

  • Chapman SJ, Thurlow M (1998) Peat respiration at low temperatures. Soil Biol Biochem 30:1013–1021

    Article  CAS  Google Scholar 

  • Chen JQ, Bridgham S, Keller J, Pastor J, Noormets A, Weltzin JF (2008) Temperature Responses to Infrared-Loading and Water Table Manipulations in Peatland Mesocosms. J Integr Plant Biol 50:1484–1496

    Article  PubMed  Google Scholar 

  • Chimner RA, Cooper DJ (2003) Influence of water table levels on CO2 emissions in a Colorado subalpine fen: an in situ microcosm study. Soil Biol Biochem 35:345–351

    Article  CAS  Google Scholar 

  • Chivers MR, Turetsky MR, Waddington JM, Harden JW, McGuire AD (2009) Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen. Ecosystems 12:1329–1342

    Article  CAS  Google Scholar 

  • Couwenberg J, Thiele A, Tanneberger F, Augustin J, Barisch S, Dubovik D, Liashchynskaya N, Michaelis D, Minke M, Skuratovich A, Joosten H (2011) Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674:67

    Article  CAS  Google Scholar 

  • Dinsmore KJ, Skiba UM, Billett MF, Rees RM (2009) Effect of water table on greenhouse gas emissions from peatland mesocosms. Plant Soil 318:229–242

    Article  CAS  Google Scholar 

  • Dise NB, Gorham E, Verry ES (1993) Environmental factors controlling methane emissions from peatlands in Northern Minnesota. J Geophys Res Atmosphere 98:D6. doi:10.1029/93JD00160

    Google Scholar 

  • Foster DR, Wright HE (1988) Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada. J Ecol 764:1164–1185

    Article  Google Scholar 

  • Funk DW, Pullman ER, Peterson KM, Crill PM, Billings W (1994) Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms. Global Biogeochem Cycles 8:271–278

    Article  CAS  Google Scholar 

  • Gorham E (1991) Northern Peatlands–Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Griffis T, Rouse W, Waddington J (2000) Interannual variability of net ecosystem CO2 exchange at. Global Biogeochem Cycles 14:1109–1121

    Article  CAS  Google Scholar 

  • Hargreaves KJ, Milne R, Cannell MGR (2003) Carbon balance of afforested peatland in Scotland. Forestry 76:299–317

    Article  Google Scholar 

  • Hribljan JA (2012) The effects of long-term water table manipulations on vegetation, pore water, substrate quality, and carbon cycling in a northern poor fen peatland. PhD dissertation, The Graduate School, Michigan Technological University

  • Intergovernmental Panel on Climate Change (IPCC) (2007) The physical basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge Univeristy Press, New York. Available at. http://www.ipcc.ch/ipccreports/ar4-wg1.htm

  • Kowalski KP, Wilcox DA (2003) Differences in sedge fen vegetation upstream and downstream from a managed impoundment. Am Midl Nat 150:199–220

    Article  Google Scholar 

  • Laiho R (2006) Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol Biochem 38:2011–2024

    Article  CAS  Google Scholar 

  • Laiho R, Vasander H, Pentilla T, Laine J (2003) Dynamics of plant-mediated organic matter and nutrient cycling following water-level drawdown in boreal peatlands. Global Biogeochem Cycles 17:1053. doi:10.1029/2002GB002015

    Article  Google Scholar 

  • Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute, Inc., Cary

    Google Scholar 

  • Makiranta P, Laiho R, Fritze H, Hytonen J, Laine J, Minkkinen K (2009) Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol Biochem 41:695–703

    Article  Google Scholar 

  • Minkkinen K, Korhonen R, Savolainen I, Laine J (2002) Carbon balance and radiative forcing of Finnish peatlands 1900-2100 - the impact of forestry drainage. Glob Change Biol 88:785–799

    Article  Google Scholar 

  • Moore TR, Dalva M (1993) The influence of temperature and water table position on carbon-dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664

    Article  CAS  Google Scholar 

  • Moore TR, Knowles R (1989) Influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69:33–38

    Article  CAS  Google Scholar 

  • Myers-Smith IH, McGuire AD, Harden JW, Chapin FS III (2007) Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest. J Geophys Res 112:G04017

    Google Scholar 

  • Nykanen H, Alm J, Lang K, Silvola J, Martikaninen PJ (1995) Emissions of CH4, N2O, and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357

    Article  Google Scholar 

  • Nykanen H, Alm J, Silvola J, Tolonen K, Martikainen PJ (1998) Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochem Cycles 12:53–69

    Article  CAS  Google Scholar 

  • Pelletier L, Garneau M, Moore TR (2011) Variation in CO2 exchange over three summers at microform scale in a boreal bog, Eastmain region, Quebec, Canada. J Geophys Res 116:G03019. doi:10.1029/2011JG001657

    Google Scholar 

  • Riutta T, Laine J, Tuittila ES (2007) Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems 10:718–733

    Article  CAS  Google Scholar 

  • SAS (2009) Statistical analysis software. Sas Institute Inc., Cary

    Google Scholar 

  • Schreader CP, Rouse WR, Griffis TJ, Boudreau LD, Blanken PD (1998) Carbon dioxide fluxes in a northern fen during a hot, dry summer. Global Biogeochem Cycles 12:729–740

    Article  CAS  Google Scholar 

  • Schuur EA, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58:701–714

    Article  Google Scholar 

  • Silvola J, Alm J, Ahlholm U, Nykanen H, Martikainen PJ (1996) The contribution of plant roots to CO2 fluxes from organic soils. Biol Fertil Soils 23:126–131

    Article  CAS  Google Scholar 

  • Strack M, Waddington JM (2007) Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochem Cycles 21:GB1007. doi:10.1029/2006GB002715

    Article  Google Scholar 

  • Strack M, Waddington JM, Rochefort L, Tuittila ES (2006a) Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J Geophys Res 111(G2):G02016

    Google Scholar 

  • Strack M, Waller MF, Waddington JM (2006b) Sedge succession and peatland methane dynamics: a potential feedback to climate change. Ecosystems 9:278–287

    Article  CAS  Google Scholar 

  • Strakova P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R (2010) Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 335:501–520

    Article  CAS  Google Scholar 

  • Sulman BN, Desai AR, Saliendra NZ, Lafleur PM, Flanagan LB, Sonnentag O, Mackay DS, Barr AG, van der Kamp G (2010) CO2 fluxes at northern fens and bogs have opposite responses to interannual fluctuations in water table. J Geophys Res Lett 37:L19702. doi:10.1029/2010GL044018

    Article  Google Scholar 

  • Thormann MN, Bayley SE (1997) Aboveground plant production and nutrient content of the vegetation in six peatlands in Alberta, Canada. Plant Ecol 131:1–16

    Article  Google Scholar 

  • Treat CC, Bubier JL, Varner RK, Crill PM (2007) Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen. J Geophys Res Biogeosci 112:G01014. doi:10.1029/2006JG00210

    Article  Google Scholar 

  • Tuittila ES, Komulainen VM, Vasander H, Nykanen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cut-away peatland. Glob Change Biol 6:569–581

    Article  Google Scholar 

  • Turestky MR, Wieder RK, Vitt DH (2002) Boreal peatland C fluxes under varying permafrost regimes. Soil Biol Biochem 34:907–912

    Article  Google Scholar 

  • Turetsky MR, Wieder RK, Vitt DH, Evans RJ, Scott KD (2007) The disappearance of relict permafrost in boreal North America: effects of peatland carbon storage and fluxes. Glob Change Biol 13:1922–1934

    Article  Google Scholar 

  • Turetsky, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD (2008) Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J Geophys Res 113:G00A10. doi:10.1029/2007JG000496

    Google Scholar 

  • Turetsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES (2011) Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 41:27–31

    Article  Google Scholar 

  • Updegraff K, Bridgham SD, Pastor J, Weishampel P, Harth C (2001) Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecol Appl 11:311–326

    Google Scholar 

  • USFWS (2009) Seney National Wildlife Refuge comprehensive conservation plan. NWR, Cold Bay

    Google Scholar 

  • Vasander H, Kettunen A (2006) Carbon in Boreal peatlands, in Boreal peatland ecosystems. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, New York, pp 165–194

    Chapter  Google Scholar 

  • Vourlitis GL, Oechel WC, Hastings SJ, Jenkins MA (1993) A system for measuring insitu CO2 and CH4 flux in unmanaged ecosystems—an arctic example. Funct Ecol 7:369–379

    Article  Google Scholar 

  • Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff L, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478

    Article  Google Scholar 

  • Weltzin JF, Bridgham SD, Pastor J, Chen J, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Glob Change Biol 9:141–151

    Article  Google Scholar 

  • White JR, Shannon RD, Weltzin JF, Pastor J, Bridgham SD (2008) Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study. J Geophys Res Biogeosci 113:G00A06. doi:10.1029/2007JG000609

    Google Scholar 

  • Wieder RK, Vitt DH, Benscoter BW (2006) Peatlands and the boreal forest. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, New York, pp 1–8

    Chapter  Google Scholar 

  • Wilcox DA, Sweat MJ, Carlson ML, Kowalski KP (2006) A water-budget approach to restoring a sedge fen affected by diking and ditching. J Hydrol 320:501–517

    Article  Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (2000) Controls on microbial production of methane and carbon dioxide in three Sphagnum-dominated peatland ecosystems as revealed by a reciprocal field peat transplant experiment. Geomicrobiol J 17:61–88

    Article  CAS  Google Scholar 

  • Yrjala K, Tuomivirta T, Juottonen H, Putkinen A, Lappi K, Tuittila ES (2011) CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Glob Change Biol 17:1311–1320

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Robin Conklin, Elizabeth Boisvert, Chris Johnson, Jamie Bourgo, Laura Kangas, and Laura Matkala for their help with site construction, as well as field and lab work. This research was supported by the U.S. Department of Energy’s Office of Science (BER) through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University. Additional support was provided by the Ecosystem Science Center at Michigan Technological University. The project would not have been possible without the cooperation of the Seney National Wildlife Refuge in allowing us to access this site. This research was supported by the U.S. Department of Energy’s Office of Science (BER) through the Midwestern Regional Center of the National Institute for Climatic Change Research at Michigan Technological University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney A. Chimner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballantyne, D.M., Hribljan, J.A., Pypker, T.G. et al. Long-term water table manipulations alter peatland gaseous carbon fluxes in Northern Michigan. Wetlands Ecol Manage 22, 35–47 (2014). https://doi.org/10.1007/s11273-013-9320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-013-9320-8

Keywords

Navigation