Skip to main content
Log in

The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: The second stage of implementation and development

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Described is the second stage of the work (2011-2014) on the implementation and development of the COSMO-Ru system of nonhydrostatic short-range weather forecasting (the first stage of the implementation and development of the COSMO-Ru system is described in [7, 8]). Demonstrated is how the research activities and ideas of G.I. Marchuk influenced modern methods for solving the systems of differential equations that describe atmospheric processes (in particular, the version of the Marchuk’s splitting method is used to find the solution of the finite-difference analog of the system of differential equations in the COSMO-Ru model); it is shown how he contributed to the development of the methods of assimilation of meteorological information associated with the use of adjoint equations. Given is a brief description of the COSMO model of the atmosphere and soil active layer, the COSMO-Ru system, and research activities on this system development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Alferov, E. D. Astakhova, G. S. Rivin, and I. A. Rozinkina, "Development of the System of High-resolution Ensemble Prediction for the Region of the Sochi-2014 Winter Olympic Games," Trudy Gidromettsentra Rossii, No. 352 (2014) [in Russian].

    Google Scholar 

  2. D. Yu. Alferov and G. S. Rivin, "The COSMO-Ru System of Mesoscale Weather Forecasting: Ensemble Prediction," Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].

    Google Scholar 

  3. D. V. Blinov, V. L. Perov, B. E. Peskov, and G. S. Rivin, "Extreme Bora in Novorossiysk on February 7-8, 2012 and Its Forecasting with the COSMO-Ru Model," Vestnik Moskovskogo Universiteta, Ser. 5, Geografiya, No. 4 (2013) [in Russian].

    Google Scholar 

  4. D. V. Blinov, G. S. Rivin, and I. A. Rozinkina, "The COSMO-Ru System of Mesoscale Weather Forecasting: The Technological Aspects of Visualization and Dissemination of Forecasts," Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].

    Google Scholar 

  5. A. Yu. Bundel’, E. D. Astakhova, I. A. Rozinkina, et al., "Verification of Short- and Medium-range Precipitation Forecasts from the Ensemble Modeling System of the Hydrometcenter of Russia," Meteorol. Gidrol., No. 10 (2011) [Russ. Meteorol. Hydrol., No. 10, 35 (2011)].

    Google Scholar 

  6. A. Yu. Bundel’, A. A. Kirsanov, A. V. Murav’ev, et al., "The First Results of Assessing the Accutacy of COSMO-Ru Mesoscale Numerical Forecasts Issued in the Framework of Weather Services for the Sochi-2014 Olympics," Trudy Gidromettsentra Rossii, No. 352 (2014) [in Russian].

    Google Scholar 

  7. R. M. Vil’fand, G. S. Rivin, and I. A. Rozinkina, "Mesoscale Weather Short-range Forecasting at the Hydrometcenter of Russia, on the Example of COSMO-RU," Meteorol. Gidrol., No. 1 (2010) [Russ. Meteorol. Hydrol., No. 1, 35 (2010)].

    Google Scholar 

  8. R. M. Vil’fand, G. S. Rivin, and I. A. Rozinkina, "COSMO-RU System of Nonhydrostatic Mesoscale Short-range Weather Forecast of the Hydrometcenter of Russia: The First Stage of Realization and Development," Meteorol. Gidrol., No. 8 (2010) [Russ. Meteorol. Hydrol., No. 8, 35 (2010)].

    Google Scholar 

  9. V. P. Dymnikov, G. R. Kontarev, N. V. Guseva, et al., "The Forecasting of Meteorological Elements for Limited Areas Using Primitive Equations," Meteorol. Gidrol., No. 9 (1975) [in Russian].

    Google Scholar 

  10. E. V. Kazakova, I. A. Rozinkina, and E. E. Machul’skaya, "The Results of Testing a New Scheme of Snow Cover Parameterization under Conditions of Snow Melting in the COSMO-Ru Model," Trudy Gidromettsentra Rossii, No. 344 (2010) [in Russian].

    Google Scholar 

  11. E. V. Kazakova, M. M. Chumakov, and I. A. Rozinkina, "An Algorithm for Computing the Fresh Snow Depth Intended for Postprocessing the Systems of Atmospheric Modeling (by Example of COSMO)," Trudy Gidromettsentra Rossii, No. 350 (2013) [in Russian].

    Google Scholar 

  12. D. B. Kiktev, E. D. Astakhova, D. V. Blinov, et al., "Development of Forecasting Technologies for Meteorological Support of the Sochi-2014 Winter Olympic Games," Meteorol. Gidrol., No. 10 (2013) [Russ. Meteorol. Hydrol., No. 10, 38 (2013)].

    Google Scholar 

  13. G. I. Marchuk, Mathematical Modeling in Environmental Problems (Nauka, Moscow, 1982) [in Russian].

  14. G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow, 1980) [in Russian].

  15. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

  16. G. I. Marchuk, Adjoint Equations and Complex System Analysis (Nauka, Moscow, 1992) [in Russian].

  17. G. I. Marchuk, Numerical Methods of Weather Forecasting (Gidrometeoizdat, Leningrad, 1967).

  18. G. I. Marchuk, Numerical Solution ofthe Problems ofthe Dynamics of Atmosphere and Ocean (Gidrometeoizdat, Leningrad, 1974) [in Russian].

  19. G. I. Marchuk, G. R. Kontarev, and G. S. Rivin, "Short-range Weather Forecasting Using Primitive Equations in the Limited Area," Izv. AN SSSR. Fizika Atmosfery i Okeana, No. 11, 3 (1967) [in Russian].

    Google Scholar 

  20. G. I. Marchuk, G. P. Kurbatkin, E. E. Kalenkovich, et al., "The Solution of the System of Equations of Short-range Weather Forecasting," Izv. AN SSSR, Ser. Geofiz., No. 12 (1964) [in Russian].

    Google Scholar 

  21. F. Mesinger and A. Arakawa, Numerical Methods Used in Atmospheric Models (Gidrometeoizdat, Leningrad, 1979) [Transl. from English].

  22. A. V. Murav’ev, A. Yu. Bundel’, D. B. Kiktev, et al., "Verification of Mesoscale Forecasts in the 2014 Olympic Games Region for the First Test Period. Part I: Verification Techniques and Polygonal Quality Assessments of the COSMO Model Forecasts," Meteorol. Gidrol., No. 11 (2013) [Russ. Meteorol. Hydrol., No. 11, 38 (2013)].

    Google Scholar 

  23. A. V. Murav’ev, A. Yu. Bundel’, D. B. Kiktev, and A. V. Smirnov, "Verification of Mesoscale Forecasts in the 2014 Olympic Games Region. Part II: Preliminary Results of Diagnostic Evaluation of Quality and Calibration of the Forecasts by the COSMO-RU2 Model," Meteorol. Gidrol., No. 12 (2013) [Russ. Meteorol. Hydrol., No. 12, 38 (2013)].

    Google Scholar 

  24. V. L. Perov, "The Computation of the Coefficients of Turbulent Mixing Using the Spectral Algorithm and Its Use in the COSMO-Ru Model," Trudy Gidromettsentra Rossii, No. 347 (2012) [in Russian].

    Google Scholar 

  25. V. L. Perov, "The Realization of the Algorithm of Computation of Turbulent Length Scale Based on the Method of Air Particle Displacement under Influence of Buoyancy Forces in the Atmospheric Boundary Layer Module of the COSMO-Ru Model of Hydrometcenter of Russia," Trudy Gidromettsentra Rossii, No. 346 (2011) [in Russian].

    Google Scholar 

  26. A. P. Revokatova, G. V. Surkova, A. A. Kirsanov, and G. S. Rivin, "Forecasting the Air Pollution in the Moscow Region Using the COSMO-ART Model," Vestnik Moskovskogo Universiteta, Ser. 5, Geografiya, 4 (2012) [in Russian].

    Google Scholar 

  27. G. S. Rivin and S. B. Medvedev, "Hydrodynamical Model of Atmosphere Constructed for the Siberian Region Using the Splitting Method," Meteorol. Gidrol., No. 5 (1995) [Russ. Meteorol. Hydrol., No. 5 (1995)].

    Google Scholar 

  28. G. S. Rivin, I. A. Rozinkina, A. N. Bagrov, and D. V. Blinov, "The COSMO-Ru7 Mesoscale Model and the Results of Its Operational Testing," Informatsionnyi Sbornik Gidromettsentra Rossii, No. 39 (2012) [in Russian].

    Google Scholar 

  29. G. S. Rivin, I. A. Rozinkina, and D. V. Blinov, "The Technologkal Line of COSMO-Ru Short-range Weather Forecasting System with the Resolution of 7 km," Trudy Gidromettsentra Rossii, No. 347 (2012) [in Russian].

    Google Scholar 

  30. COSMO Consortium Website: http://www.cosmo-model.org.

  31. G. V. Surkova, D. V. Blinov, A. A. Kirsanov, et al., "Simulation of Air Pollution Distribution from Forest Fires Using the Chemical-transport Model COSMO-Ru7-ART," Optika Atmosfery i Okeana, No. 1, 27 (2014) [Atmos. Oceanic Optics, No. 1, 27 (2014)].

    Google Scholar 

  32. G. V. Surkova, A. A. Kirsanova, A. V. Kislov, et al., "Forecasting the Concentration of Poltutants Using the Unified COSMO-Ru7-ART Model," Trudy Gidromettsentra Rossii, No. 352 (2014) [in Russian].

    Google Scholar 

  33. M. V. Shatunova and G. S. Rivin, "The COSMO-Ru1 High-resolution Model: The Effects of External Parameters on the Results of the Modeling," Trudy Gidromettsentra Rossii, No. 352 (2014) [in Russian].

    Google Scholar 

  34. M. Baldauf, A. Seifert, J. Foerstner, et al., "Operational Convective-scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities," Mon. Wea. Rev., 139 (2011).

    Google Scholar 

  35. G. Doms, J. Foerstner, E. Heise, et al., A Description of the Nonhydrostatic Regional COSMO-Model, Part II: Physical Parameterization, COSMO-Model 4.20. September 2011, http://www.cosmomodel.org/conent/model/documentation/ core/cosmoPhysParamtr.pdf.

  36. G. Doms, U. Schaettler, and M. Baldauf, A Description of the Nonhydrostatic Regional COSMO-Model, Part I: Dynamics and Numerics, COSMO-Model 4.20. September 2011; http://www.cosmo-model.org/content/model/ documentation/core/cosmoDyncsNumcs.pdf.

  37. E. Kazakova, M. Chumakov, and I. Rozinkina, "ReaHzation of the Parametric Snow Cover Model SMFE for Snow Characteristics Calculation According to Standard Net Meteorological Observations," COSMO Newsletter, No. 13 (2013).

    Google Scholar 

  38. E. Kazakova and I. Rozinkina, "Testing of Snow Parameterization Schemes in COSMO-Ru: Analysis and Results," COSMO Newsletter, No. 11 (2011).

    Google Scholar 

  39. G. Kontarev, The Adjoint Equation Technique Applied to Meteorological Problems, ECMWF Technical Report No. 21 (Reading, U.K., 1980).

  40. D. Majewsky, D. Liermann, P. Prohl, et al., "The Operational Global Icosahedral-hexagonal Gridpoint Model GME: Description and High-resolution Tests," Mon. Wea. Rev., 130 (2002).

    Google Scholar 

  41. G. I. Marchuk, A New Approach to the Numerical Solution of Differential Equations of Atmospheric Processes, World Meteorological Organization Technical Note No. 66 (Geneva, Switzerland, 1965).

  42. G. I. Marchuk, "Mathematical Issues of Industrial Effluent Optimization," J. Meteorol. Soc. Japan, 60 (1982).

    Google Scholar 

  43. I. M. Navon, "A Review of Variational and Optimization Methods in Meteorology," in Variational Methods in Geosciences, Proceedings of the Internal Symposium on Variational Methods in Geosciences Held at the University ofOklahoma, Norman, Oklahoma, October 15-17, 1985, Ed. by Y. K. Sasaki (Elsevier Science Publishers B. V., Amsterdam, 1986), http://people.sc.fsu.edu/~inavon/pubs1/vmg.pdf.

  44. H. Ritchie and A. Robert, "A Historical Perspective on Numerical Weather Prediction: A 1987 Interview with Andre Robert," in Atmosphere-Ocean, Vol. 35 (1997) (Special Issue: Numerical Methods in Atmospheric and Oceanic Modelling: The Andre J. Robert Memorial Volume), http://www.tandfonline.com/doi/pdf/10.1080/ 07055900.1997.9687340 or http://dx.doi.org/10.1080/07055900.1997.9687340.

  45. G. S. Rivin, "Modern Computational Technologies for the Estimation of Atmospheric Processes on Regional Scales," in Air Pollution Processes in Regional Scales, NATO Science Series, IV. Earth and Environmental Sciences, Vol. 30 (Kluwer Academic Publishers, Dordrecht, Boston, London, 2003).

  46. C. Schaer, D. Leuenberger, O. Fuhrer, et al., "A New Terrain-following Vertical Coordinate Formulation for Atmospheric Prediction Models," Mon. Wea. Rev., 130 (2002).

    Google Scholar 

  47. C. Schraff and R. Hess, A Descrition of the Nonhydrostatic Regional COSMO-Model, Part III: Data Assimilation (Offenbach, 2012), http://www.cosmo-model.org/content/model/documentation/core/cosmoAssim.pdf.

  48. J. Steppeler, G. Doms, U. Schaettler, et al., "Meso-gamma Scale Forecasts Using the Nonhydrostatic Model LM," Meteorol. Atmos. Phys., 82 (2003).

    Google Scholar 

  49. B. Vogel, H. Vogel, D. Baumner, et al., "COSMO-ART: Aerosols and Reactive Trace Gases within the COSMO Model," in Integrated Systems of Meso-meteorological and Chemical Transport Models, Ed. by A. Baklanov, A. Mahura, and R. Sokhi (Springer, 2011).

  50. L. J. Wicker and W. C. Skamarock, "Time-splitting Methods for Elastic Models Using Forward Time Schemes," Mon. Wea. Rev., 130 (2002).

    Google Scholar 

  51. G. Zaengl, ICON Presen ta tion on COSMO General Meeting, Eretria, Greece, 09.09.2014, http://cosmo-model. org/content/consortium/generalMeetings/general2014/plenary/icon_zangl.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Rivin.

Additional information

Original Russian Text © G.S. Rivin, I.A. Rozinkina, R.M. Vil’fand, D.Yu. Alferov, E.D. Astakhova, D.V. Blinov, A.Yu. Bundel’, E. V. Kazakova, A.A. Kirsanov, M.A. Nikitin, V.L. Perov, G.V. Surkova, A.P. Revokatova, M.V. Shatunova, M.M. Chumakov, 2015, published in Meteorologiya i Gidrologiya, 2015, No. 6, pp. 58-70.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivin, G.S., Rozinkina, I.A., Vil’fand, R.M. et al. The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: The second stage of implementation and development. Russ. Meteorol. Hydrol. 40, 400–410 (2015). https://doi.org/10.3103/S1068373915060060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373915060060

Keywords

Navigation