Skip to main content
Log in

Impacts of a Poultry Processing Plant on the Diversity of Escherichia coli Populations and Transferability of Tetracycline Resistance Genes in an Urban Stream in South Carolina

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Poultry feed is often supplemented with low dosages of antibiotic to promote growth, making farms and animal processing facilities potential point sources of antibiotic-resistant fecal bacteria to aquatic ecosystems. In 2010 and 2011, we detected high concentrations of fecal indicator bacteria (FIB) in effluent released from a poultry processing plant into a headwater stream in Greenville, South Carolina. The FIB pollution became undetectable in 2012 with the plant under new management. To determine the plant’s impacts on the stream, we compared the genetic variations of Escherichia coli populations from upstream and downstream of the plant and from reference streams in the same watershed by classifying each isolate into an E. coli reference collection (ECOR) phylogenetic group. For tetracycline-resistant E. coli isolates, we analyzed the resistance genes, minimum inhibitory concentrations (MICs), gene transferability, and plasmid incompatibility groups (Inc). Distributions of ECOR groups upstream and downstream of the plant differed significantly in 2011 but not in 2012. The resistance genes tet(A) and tet(B) were prevalent, with tet(A) more likely to be found on the promiscuous IncP plasmid. A higher percentage of isolates having both tet(A) and tet(B) was found downstream in 2011 than in 2012. Dual-gene isolates did not have higher MICs than single-gene isolates but were more likely to transfer tet(A) on IncP. We propose that the processing plant acted not only as a point source of FIB but also as a factor influencing gene transferability. Additionally, given the results from 2012, the FIB impacts of the processing plant appeared to be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarestrup, F. M. (2005). Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic & Clinical Pharmacology & Toxicology, 96(4), 271–281.

    Article  CAS  Google Scholar 

  • Adamczyk, M., & Jagura-Burdzy, G. (2003). Spread and survival of promiscuous IncP-1 plasmids. Acta Biochimica Polonica, 50(2), 425–453.

    CAS  Google Scholar 

  • Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8, 251–259.

    Article  CAS  Google Scholar 

  • Al-Zenki, S., Al-Nasser, A., Al-Safar, A., Alomirah, H., Al-Haddad, A., Hendriksen, R. S., et al. (2007). Prevalence and antibiotic resistance of Salmonella isolated from a poultry farm and processing plant environment in the State of Kuwait. Foodborne Pathogens and Disease, 4(3), 367–373.

    Article  CAS  Google Scholar 

  • Andersen, S. R., & Sandaa, R.-A. (1994). Distribution of tetracycline resistance determinants among Gram-negative bacteria isolated from polluted and unpolluted marine sediments. Applied and Environmental Microbiology, 60(3), 908–912.

    CAS  Google Scholar 

  • Andersson, D. I., & Hughes, D. (2011). Persistence of antibiotic resistance in bacterial populations. FEMS Microbiology Reviews, 35, 901–911.

    Article  CAS  Google Scholar 

  • Bahl, M. I., Hansen, L. H., & Sørensen, S. J. (2009). Persistence mechanisms of conjugative plasmids. In M. B. Gogarten, J. P. Gogarten, & L. Olendzenski (Eds.), Horizontal gene transfer: genomes in flux (Methods in Molecular Biology vol. 532) (pp. 73–102). New York: Humana.

    Chapter  Google Scholar 

  • Barkovskii, A. L., & Bridges, C. (2012). Persistence and profiles of tetracycline resistance genes in swine farms and impact of operational practices on their occurrence in farms’ vicinities. Water, Air, & Soil Pollution, 223(1), 49–62.

    Article  CAS  Google Scholar 

  • Bryan, A., Shapir, N., & Sadowsky, M. J. (2004). Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Applied and Environmental Microbiology, 70(4), 2503–2507.

    Article  CAS  Google Scholar 

  • Campagnolo, E. R., Johnson, K. R., Karpati, A., Rubin, C. S., Kolpin, D. W., Meyer, M. T., et al. (2002). Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Science of the Total Environment, 299(1–3), 89–95.

    Article  CAS  Google Scholar 

  • Caratolli, A., Bertini, A., Villa, L., Falbo, V., Hopkins, K. L., & Threlfall, E. J. (2005). Identification of plasmids by PCR-based replicon typing. Journal of Microbiological Methods, 63(3), 219–228.

    Article  Google Scholar 

  • Carattoli, A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 53(6), 2227–2238.

    Article  CAS  Google Scholar 

  • Characklis, G. W., Dilts, M. J., SimmonsIII, O. D., Likirdopulos, C. A., Kromentis, L.-A. H., & Sobsey, M. D. (2005). Microbial partitioning to settleable particles in stormwater. Water Research, 39(9), 1773–1782.

    Article  CAS  Google Scholar 

  • Chen, J., Michel, F. C., Jr., Sreevatsan, S., Morrison, M., & Yu, Z. (2010). Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms. Microbial Ecology, 60(3), 479–486.

    Article  CAS  Google Scholar 

  • Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260.

    Article  CAS  Google Scholar 

  • Clermont, O., Bonacorsi, S., & Bingen, E. (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. Applied and Environmental Microbiology, 66(10), 4555–4558.

    Article  CAS  Google Scholar 

  • da Costa, P. M., Vaz-Pires, P. M., & Bernardo, F. M. (2006). Antibiotic resistance of Enterococcus spp. isolated from wastewater and sludge of poultry slaughterhouses. Journal of Environmental Science and Health. Part. B, 41(8), 1393–1403.

    Article  Google Scholar 

  • da Costa, P. M., Vaz-Pires, P., & Bernardo, F. (2008). Antimicrobial resistance in Escherichia coli isolated in wastewater and sludge from poultry slaughterhouse wastewater plants. Journal of Environmental Health, 70(7), 40–45.

    Google Scholar 

  • De Gelder, L., Ponciano, J. M., Joyce, P., & Top, E. M. (2007). Stability of a promiscuous plasmid in different hosts: no guarantee for a long-term relationship. Microbiology, 153, 452–463.

    Article  Google Scholar 

  • Del Nery, V., de Nardi, I. R., Damianovic, M. H. R. Z., Pozzi, E., Amorim, A. K. B., & Zaiat, M. (2007). Long-term operating performance of a poultry slaughterhouse wastewater treatment plant. Resources, Conservation and Recycling, 50(1), 102–114.

    Article  Google Scholar 

  • Esiobu, N., Armenta, L., & Ike, J. (2002). Antibiotic resistance in soil and water environments. International Journal of Environmental Health Research, 12, 133–144.

    Article  Google Scholar 

  • Everitt, B. S. (1977). The analysis of contingency tables. London: Chapman and Hall.

    Book  Google Scholar 

  • Ewers, C., Antao, E.-M., Diehl, I., Philipp, H.-C., & Wieler, L. H. (2009). Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Applied and Environmental Microbiology, 75(1), 184–192.

    Article  CAS  Google Scholar 

  • Fairchild, A. S., Smith, J. L., Idris, U., Lu, J., Sanchez, S., Purvis, L. B., et al. (2005). Effects of orally administered tetracycline on the intestinal community structure of chickens and on tet determinant carriage by commensal bacteria and Campylobacter jejuni. Applied and Environmental Microbiology, 71(10), 5865–5872.

    Article  CAS  Google Scholar 

  • Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O. A., & Dantas, G. (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337, 1107–1111.

    Article  CAS  Google Scholar 

  • Furtula, V., Farrell, E. G., Diarrassouba, F., Rempel, H., Pritchard, J., & Diarra, M. S. (2010). Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poultry Science, 89(1), 180–188.

    Article  CAS  Google Scholar 

  • Furushita, M., Shiba, T., Maeda, T., Yahata, M., Kaneoka, A., Takahashi, Y., et al. (2003). Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, 69(9), 5336–5342.

    Article  CAS  Google Scholar 

  • Goñi-Urriza, M., Capdepuy, M., Arpin, C., Raymond, N., Caumette, P., & Quentin, C. (2000). Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Applied and Environmental Microbiology, 66(1), 125–132.

    Article  Google Scholar 

  • Guerra, B., Junker, E., Schroeter, A., Malorny, B., Lehmann, S., & Helmuth, R. (2003). Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. Journal of Antimicrobial Chemotherapy, 52, 489–492.

    Article  CAS  Google Scholar 

  • Haberman, S. J. (1973). The analysis of residuals in cross-classified tables. Biometrics, 29, 205–220.

    Article  Google Scholar 

  • Heuer, H., Binh, C. T. T., Jechalke, S., Kopmann, C., Zimmerling, U., Krogerrecklenfort, E., et al. (2012). IncP-1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Frontiers in Microbiology, 3, 1–8.

    Article  Google Scholar 

  • Hu, J., Shi, J., Chang, H., Li, D., Yang, M., & Kamagata, Y. (2008). Phenotyping and genotyping of antibiotic-resistant Escherichia coli isolated from a natural river basin. Environmental Science & Technology, 42(9), 3415–3420.

    Article  CAS  Google Scholar 

  • Huys, G., D’Haene, K., Van Eldere, J., von Holy, A., & Swings, J. (2005). Molecular diversity and characterization of tetracycline-resistant Staphylococcus aureus isolates from a poultry processing plant. Applied and Environmental Microbiology, 71(1), 574–579.

    Article  CAS  Google Scholar 

  • Johnson, J. R., Delavari, P., Kuskowski, M., & Stell, A. L. (2001). Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. Journal of Infectious Diseases, 183(1), 78–88.

    Article  CAS  Google Scholar 

  • Khachatryan, A. R., Hancock, D. D., Besser, T. E., & Call, D. R. (2004). Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Applied and Environmental Microbiology, 70(2), 752–757.

    Article  CAS  Google Scholar 

  • Kiepper, B. H. (2009). Effects of tertiary microsieving on the composition of poultry processing wastewater. Journal of Applied Poultry Research, 18(4), 716–724.

    Article  CAS  Google Scholar 

  • Kim, T.-E., Jeong, Y.-W., Cho, S.-H., Kim, S.-J., & Kwon, H.-J. (2007). Chronological study of antibiotic resistances and their relevant genes in Korean avian pathogenic Escherichia coli isolates. Journal of Clinical Microbiology, 45(10), 3309–3315.

    Article  CAS  Google Scholar 

  • Kobayashi, R. K. T., Aquino, I., Ferreira, A. L., & Vidotto, M. C. (2011). ECOR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in Southern Brazil. Foodborne Pathogens and Disease, 8(5), 631–634.

    Article  CAS  Google Scholar 

  • Koike, S., Krapac, I. G., Oliver, H. D., Yannarell, A. C., Chee-Sanford, J. C., Aminov, R. I., et al. (2007). Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Applied and Environmental Microbiology, 73(15), 4813–4823.

    Article  CAS  Google Scholar 

  • Kummerer, K. (2004). Resistance in the environment. Journal of Antimicrobial Chemotherapy, 54, 311–320.

    Article  CAS  Google Scholar 

  • Lanz, R., Kuhnert, P., & Boerlin, P. (2003). Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland. Veterinary Microbiology, 91, 73–84.

    Article  CAS  Google Scholar 

  • Levy, S. B. (1978). Emergence of antibiotic-resistant bacteria in the intestinal flora of farm inhabitants. Journal of Infectious Diseases, 137(5), 688–690.

    Article  CAS  Google Scholar 

  • Levy, S., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10(12), S122–S129.

    Article  CAS  Google Scholar 

  • Lewis, G. P., Mitchell, J. D., Andersen, C. B., Haney, D. C., Liao, M.-K., & Sargent, K. A. (2007). Urban influences on stream chemistry and biology in the Big Brushy Creek watershed, South Carolina. Water, Air, & Soil Pollution, 182(1–4), 303–323.

    Article  CAS  Google Scholar 

  • Lyon, S. A., Berrang, M. E., Fedorka-Cray, P. J., Fletcher, D. L., & Meinersmann, R. J. (2008). Antimicrobial resistance of Listeria monocytogenes isolated from a poultry further processing plant. Foodborne Pathogens and Disease, 5(3), 253–259.

    Article  CAS  Google Scholar 

  • Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157, 2893–2902.

    Article  CAS  Google Scholar 

  • McLellan, S. L., Hollis, E. J., Depas, M. M., Van Dyke, M., Harris, J., & Scopel, C. O. (2007). Distribution and fate of Escherichia coli in Lake Michigan following contamination with urban stormwater and combined sewer overflows. Journal of Great Lakes Research, 33(3), 566–580.

    Article  Google Scholar 

  • Menon, A. S. (1985). Salmonellae and pollution indicator bacteria in municipal and food processing effluents and the Cornwallis River. Canadian Journal of Microbiology, 31(7), 598–603.

    Article  CAS  Google Scholar 

  • Merka, W. C. (1991). Environmental issues for the poultry industry: processing. Poultry Science, 70(5), 1118–1122.

    Article  Google Scholar 

  • Miranda, C. D., Kehrenberg, C., Ulep, C., Schwarz, S., & Roberts, M. C. (2003). Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrobial Agents and Chemotherapy, 47(3), 883–888.

    Article  CAS  Google Scholar 

  • Moulin-Schouleur, M., Reperant, M., Laurent, S., Bree, A., Mignon-Grasteau, S., Germon, P., et al. (2007). Extraintestinal pathogenic Escherichia coli strains of avian and human origin: links between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology, 45(10), 3366–3376.

    Article  CAS  Google Scholar 

  • Moura, A., Oliveira, C., Henriques, I., Smalla, K., & Correia, A. (2012). Broad diversity of conjugative plasmids in integron-carrying bacteria from wastewater environments. FEMS Microbiology Letters, 330, 157–164.

    Article  CAS  Google Scholar 

  • Nawaz, M., Khan, A. A., Khan, S., Sung, K., Kerdahi, K., & Steele, R. (2009). Molecular characterization of tetracycline-resistant genes and integrons from avirulent strains of Escherichia coli isolated from catfish. Foodborne Pathogens and Disease, 6(5), 553–559.

    Article  CAS  Google Scholar 

  • Newton, R. J., VandeWalle, J. L., Borchardt, M. A., Gorelick, M. H., & McLellan, S. L. (2011). Lachnospiraceae and Bacteroidales alternative fecal indicators reveal chronic human sewage contamination in an urban harbor. Applied and Environmental Microbiology, 77(19), 6972–6981.

    Article  CAS  Google Scholar 

  • Ng, L.-K., Martin, I., Alfa, M., & Mulvey, M. (2001). Multiplex PCR for the detection of tetracycline resistant genes. Molecular and Cellular Probes, 15(4), 209–215.

    Article  CAS  Google Scholar 

  • Özgümüş, O. B., Celik-Sevim, E., Alpay-Karaoglu, S., Sandalli, C., & Sevim, A. (2007). Molecular characterization of antibiotic resistant Escherichia coli strains isolated from tap and spring waters in a coastal region in Turkey. Journal of Microbiology, 45(5), 379–387.

    Google Scholar 

  • Piddock, L. J. V., Griggs, D., Johnson, M. M., Ricci, V., Elviss, N. C., Williams, L. K., et al. (2008). Persistence of Campylobacter species, strain types, antibiotic resistance and mechanisms of tetracycline resistance in poultry flocks treated with chlortetracycline. Journal of Antimicrobial Chemotherapy, 62(2), 303–315.

    Article  CAS  Google Scholar 

  • Pruden, A., Arabi, M., & Storteboom, H. N. (2012). Correlation between upstream human activities and riverine antibiotic resistance genes. Environmental Science & Technology, 46(21), 11541–11549.

    Article  CAS  Google Scholar 

  • Rankin, I. D. (2005). MIC testing. In M. B. Coyle (Ed.), Manual of antimicrobial susceptibility testing (pp. 53–62). Washington DC: ASM Press.

    Google Scholar 

  • Rhodes, G., Huys, G., Swings, J., Mcgann, P., Hiney, M., Smith, P., et al. (2000). Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1721 in dissemination of the tetracycline resistance determinant TetA. Applied and Environmental Microbiology, 66(9), 3883–3890.

    Article  CAS  Google Scholar 

  • Sandalli, C., Özgümüş, O. B., & Sevim, A. (2010). Characterization of tetracycline resistance genes in tetracycline-resistant Enterobacteriaceae obtained from a coliform collection. World Journal of Microbiology and Biotechnology, 26(11), 2099–2103.

    Article  CAS  Google Scholar 

  • Schlüter, A., Szczepanowski, R., Pühler, A., & Top, E. M. (2007). Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiology Reviews, 31, 449–477.

    Article  Google Scholar 

  • Sengeløv, G., Halling-Sørensen, B., & Aarestrup, F. M. (2003). Susceptibility of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E. coli from food animals. Veterinary Microbiology, 95(1–2), 91–101.

    Article  Google Scholar 

  • Seyfried, E. E., Newton, R. J., Rubert, K. F., IV, Pedersen, J. A., & McMahon, K. D. (2010). Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microbial Ecology, 59(4), 799–807.

    Article  CAS  Google Scholar 

  • Smith, J. L., Drum, D. J. V., Dai, Y., Kim, J. M., Sanchez, S., Maurer, J. J., et al. (2007). Impact of antimicrobial usage on antimicrobial resistance in commensal Escherichia coli strains colonizing broiler chickens. Applied and Environmental Microbiology, 73(5), 1404–1414.

    Article  CAS  Google Scholar 

  • Sommer, M. O. A., & Dantas, G. (2011). Antibiotics and the resistant microbiome. Current Opinion in Microbiology, 14, 556–563.

    Article  CAS  Google Scholar 

  • Stachowiak, M., Clark, S. E., Templin, R. E., & Baker, K. H. (2010). Tetracycline-resistant Escherichia coli in a small stream receiving fish hatchery effluent. Water, Air, & Soil Pollution, 21(1–4), 251–259.

    Article  Google Scholar 

  • Stine, O. C., Johnson, J. A., Keefer-Norris, A., Perry, K. L., Tigno, J., Qaiyumi, S., et al. (2007). Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. International Journal of Antimicrobial Agents, 29(3), 348–352.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2002). Method 1103.1: Escherichia coli in water by membrane filtration using membrane-thermotolerant Escherichia coli agar (mTEC). EPA 821-R-02-020, Office of Water, Washington, DC.

  • Zhang, X.-X., Zhang, T., & Fang, H. H. P. (2009). Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 82(3), 397–414.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kelly Funderburk, Erin Anderson, Grace McKnight, and Erika Jansen for their help in collecting and processing samples. Lori Nelsen and students from the Furman University River Basins Research Initiative conducted the water chemistry analyses. We also thank Mike Winiski for the help in generating maps of the sample locations. This study was supported by the Furman Advantage Undergraduate Research Fellowship Program, Furman University Research and Professional Growth Grants, the South Carolina Independent Colleges and Universities Student-Faculty Research Program, and a grant to Furman University from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory P. Lewis or Min-Ken Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, B.W., McCauley, S., Lewis, G.P. et al. Impacts of a Poultry Processing Plant on the Diversity of Escherichia coli Populations and Transferability of Tetracycline Resistance Genes in an Urban Stream in South Carolina. Water Air Soil Pollut 225, 2030 (2014). https://doi.org/10.1007/s11270-014-2030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2030-x

Keywords

Navigation