Skip to main content

Advertisement

Log in

Preclinical Pharmacokinetic/Pharmacodynamic Models to Predict Schedule-Dependent Interaction Between Erlotinib and Gemcitabine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the pharmacological effects of different erlotinib (ER) and gemcitabine (GM) combination schedules by in vitro and in vivo experiments and PK/PD models in non-small cell lung cancer cells.

Methods

H1299 cells were exposed to different ER combined with GM schedules. Cell growth inhibition was analyzed to evaluate these schedules. A preclinical in vivo study was then conducted to compare tumor suppression effects of different schedules in H1299 xenografts. PK/PD models were developed to quantify the anti-tumor interaction of ER and GM.

Results

Synergism was observed when ER preceded GM, but other sequences showed antagonism. The optimal in vitro schedule, or interval schedule, was applied to the animal study, which showed greater anti-tumor effect than simultaneous group. PK/PD models implied that interaction of the two drugs was additive in simultaneous treatment but synergistic in interval schedule. The simulation results showed that interval schedule can delay tumor growth for a longer time, and demonstrated more evident anti-tumor effect compared with simultaneous group if the treatment duration was longer.

Conclusions

Interval schedule of the two drugs can achieve synergistic anti-tumor effect, and is superior to simultaneous treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EGFR:

epidermal growth factor receptor

ER:

erlotinib

FDA:

Food and Drug Administration

FOCE:

first order conditional estimation

GM:

gemcitabine

MTD:

maximum tolerated dose

NSCLC:

non-small-cell lung cancer

OD:

optical density

PBS:

phosphate buffered saline

PK/PD:

pharmacokinetic/pharmacodynamic

SRB:

sulforhodamine B

TKI:

tyrosine kinase inhibitor

VPC:

visual predictive check

References

  1. Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM, Ward E, Wu XC, Eheman C, Anderson R, Ajani UA, Kohler B, Edwards BK. Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst. 2008;100(23):1672–94.

    Article  PubMed  Google Scholar 

  2. Mendelsohn Jand Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21(14):2787–99.

    Article  Google Scholar 

  3. Perez-Soler R. HER1/EGFR targeting: refining the strategy. Oncologist. 2004;9(1):58–67.

    Article  PubMed  CAS  Google Scholar 

  4. Meyer F, Lueck A, Hribaschek A, Lippert H, Ridwelski K. Phase I trial using weekly administration of gemcitabine and docetaxel in patients with advanced pancreatic carcinoma. Chemotherapy. 2004;50(6):289–96.

    Article  PubMed  CAS  Google Scholar 

  5. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res. 1991;51(22):6110–7.

    PubMed  CAS  Google Scholar 

  6. Higgins B, Kolinsky K, Smith M, Beck G, Rashed M, Adames V, Linn M, Wheeldon E, Gand L, Birnboeck H, Hoffmann G. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models. Anticancer Drugs. 2004;15(5):503–12.

    Article  PubMed  CAS  Google Scholar 

  7. Gatzemeier U, Pluzanska A, Szczesna A, Kaukel E, Roubec J, De Rosa F, Milanowski J, Karnicka-Mlodkowski H, Pesek M, Serwatowski P, Ramlau R, Janaskova T, Vansteenkiste J, Strausz J, Manikhas GM, Von Pawel J. Phase III study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer: the Tarceva Lung Cancer Investigation Trial. J Clin Oncol. 2007;25(12):1545–52.

    Article  PubMed  CAS  Google Scholar 

  8. Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, Kris MG, Tran HT, Klein P, Li X, Ramies D, Johnson DH, Miller VA. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(25):5892–9.

    Article  PubMed  CAS  Google Scholar 

  9. Stinchcombe TE, Peterman AH, Lee CB, Moore DT, Beaumont JL, Bradford DS, Bakri K, Taylor M, Crane JM, Schwartz G, Hensing TA, McElroy Jr E, Niell HB, Harper HD, Pal S, Socinski MA. A randomized phase II trial of first-line treatment with gemcitabine, erlotinib, or gemcitabine and erlotinib in elderly patients (age >/=70 years) with stage IIIB/IV non-small cell lung cancer. J Thorac Oncol. 2011;6(9):1569–77.

    Article  PubMed  Google Scholar 

  10. Giovannetti E, Lemos C, Tekle C, Smid K, Nannizzi S, Rodriguez JA, Ricciardi S, Danesi R, Giaccone G, Peters GJ. Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol Pharmacol. 2008;73(4):1290–300.

    Article  PubMed  CAS  Google Scholar 

  11. Morelli MP, Cascone T, Troiani T, De Vita F, Orditura M, Laus G, Eckhardt SG, Pepe S, Tortora G, Ciardiello F. Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann Oncol. 2005;16 Suppl 4:iv61–8.

    Article  PubMed  Google Scholar 

  12. Koch G, Walz A, Lahu G, Schropp J. Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn. 2009;36(2):179–97.

    Article  PubMed  CAS  Google Scholar 

  13. Drewinko B, Loo TL, Brown B, Gottlieb JA, Freireich EJ. Combination chemotherapy in vitro with adriamycin. Observations of additive, antagonistic, and synergistic effects when used in two-drug combinations on cultured human lymphoma cells. Cancer Biochem Biophys. 1976;1(4):187–95.

    PubMed  CAS  Google Scholar 

  14. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

    Article  PubMed  CAS  Google Scholar 

  15. Vichai Vand Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–6.

    Article  Google Scholar 

  16. Cheng H, An SJ, Zhang XC, Dong S, Zhang YF, Chen ZH, Chen HJ, Guo AL, Lin QX, Wu YL. In vitro sequence-dependent synergism between paclitaxel and gefitinib in human lung cancer cell lines. Cancer Chemother Pharmacol. 2011;67(3):637–46.

    Article  PubMed  CAS  Google Scholar 

  17. Li T, Ling YH, Goldman ID, Perez-Soler R. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clin Cancer Res. 2007;13(11):3413–22.

    Article  PubMed  CAS  Google Scholar 

  18. Ceresa C, Giovannetti E, Voortman J, Laan AC, Honeywell R, Giaccone G, Peters GJ. Bortezomib induces schedule-dependent modulation of gemcitabine pharmacokinetics and pharmacodynamics in non-small cell lung cancer and blood mononuclear cells. Mol Cancer Ther. 2009;8(5):1026–36.

    Article  PubMed  CAS  Google Scholar 

  19. Mai Z, Blackburn GL, Zhou JR. Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis. 2007;28(6):1217–23.

    Article  PubMed  CAS  Google Scholar 

  20. Son DS, Wilson AJ, Parl AK, Khabele D. The effects of the histone deacetylase inhibitor romidepsin (FK228) are enhanced by aspirin (ASA) in COX-1 positive ovarian cancer cells through augmentation of p21. Cancer Biol Ther. 2010;9(11):928–35.

    Article  PubMed  CAS  Google Scholar 

  21. Li M, Wu Q, Li HQ, Ning MR, Chen Y, Li L, Zhou TY, Lu W. A sensitive LC-MS/MS method to determine the concentrations of erlotinib and its active metabolite OSI-420 in BALB/c nude mice plasma simulatneously and its application to a pharmacokinetic study. J Chin Pharmaceut Sci. 2012;21:296–303.

    Google Scholar 

  22. Immordino ML, Brusa P, Rocco F, Arpicco S, Ceruti M, Cattel L. Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J Control Release. 2004;100(3):331–46.

    Article  PubMed  CAS  Google Scholar 

  23. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I, Rocchetti M. Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 2004;64(3):1094–101.

    Article  PubMed  CAS  Google Scholar 

  24. Jusko WJ. Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci. 1971;60(6):892–5.

    Article  PubMed  CAS  Google Scholar 

  25. Bernard A, Kimko H, Mital D, Poggesi I. Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development. Expert Opin Drug Metab Toxicol; 2012.

  26. Rocchetti M, Simeoni M, Pesenti E, De Nicolao G, Poggesi I. Predicting the active doses in humans from animal studies: a novel approach in oncology. Eur J Cancer. 2007;43(12):1862–8.

    Article  PubMed  CAS  Google Scholar 

  27. Yang J, Mager DE, Straubinger RM. Comparison of two pharmacodynamic transduction models for the analysis of tumor therapeutic responses in model systems. AAPS J. 2010;12(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  28. Cohen MH, Johnson JR, Chen YF, Sridhara R, Pazdur R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist. 2005;10(7):461–6.

    Article  PubMed  CAS  Google Scholar 

  29. Smith NF, Baker SD, Gonzalez FJ, Harris JW, Figg WD, Sparreboom A. Modulation of erlotinib pharmacokinetics in mice by a novel cytochrome P450 3A4 inhibitor, BAS 100. Br J Cancer. 2008;98(10):1630–2.

    Article  PubMed  CAS  Google Scholar 

  30. Eli Lilly and Company. GEMZAR® (gemcitabine hydrochloride) for injection. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/020509s064lbl.pdf. Accessed 1996.

Download references

Acknowledgments and Disclosures

This work was supported by the Ministry of Science and Technology of the People’s Republic of China Grant 2009ZX09301-010 and National Natural Science Foundation of China (NSFC) Grant 81273583.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyan Zhou or Wei Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 81 kb)

ESM 2

(DOCX 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Li, H., Cheng, X. et al. Preclinical Pharmacokinetic/Pharmacodynamic Models to Predict Schedule-Dependent Interaction Between Erlotinib and Gemcitabine. Pharm Res 30, 1400–1408 (2013). https://doi.org/10.1007/s11095-013-0978-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0978-7

KEY WORDS

Navigation