Skip to main content

Advertisement

Log in

Phospho-NSAIDs Have Enhanced Efficacy in Mice Lacking Plasma Carboxylesterase: Implications for their Clinical Pharmacology

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to evaluate the metabolism, pharmacokinetics and efficacy of phospho-NSAIDs in Ces1c-knockout mice.

Methods

Hydrolysis of phospho-NSAIDs by Ces1c was investigated using Ces1c-overexpressing cells. The rate of phospho-NSAID hydrolysis was compared between wild-type, Ces1c+/− and Ces1c−/− mouse plasma in vitro, and the effect of plasma Ces1c on the cytotoxicity of phospho-NSAIDs was evaluated. Pharmacokinetics of phospho-sulindac was examined in wild-type and Ces1c−/− mice. The impact of Ces1c on the efficacy of phospho-sulindac was investigated using lung and pancreatic cancer models in vivo.

Results

Phospho-NSAIDs were extensively hydrolyzed in Ces1c-overexpressing cells. Phospho-NSAID hydrolysis in wild-type mouse plasma was 6–530-fold higher than that in the plasma of Ces1c−/− mice. Ces1c-expressing wild-type mouse serum attenuated the in vitro cytotoxicity of phospho-NSAIDs towards cancer cells. Pharmacokinetic studies of phospho-sulindac using wild-type and Ces1c−/− mice demonstrated 2-fold less inactivation of phospho-sulindac in the latter. Phospho-sulindac was 2-fold more efficacious in inhibiting the growth of lung and pancreatic carcinoma in Ces1c −/− mice, as compared to wild-type mice.

Conclusions

Our results indicate that intact phospho-NSAIDs are the pharmacologically active entities and phospho-NSAIDs are expected to be more efficacious in humans than in rodents due to their differential expression of carboxylesterases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ces1c:

Mouse plasma carboxylesterase isoform 1c

CES2:

Carboxylesterase 2

COX:

Cyclooxygenase

KPC:

Pancreatic carcinoma

LLC:

Lewis lung carcinoma

NSAID:

Non-steroidal anti-inflammatory drug

PLA-PEG:

Polylactic acid-polyethylene glycol

P-S:

Phospho-sulindac

P-V:

Phospho-valproic acid

References

  1. Clevers H. Colon cancer—understanding how NSAIDs work. New Eng J Med. 2006;354:761–3.

    Article  CAS  PubMed  Google Scholar 

  2. Scherubl H, Sutter AP, Zeitz M. NSAIDS and esophageal cancer. Gastroenterology. 2003;125:1914–5. author reply 5.

    Article  PubMed  Google Scholar 

  3. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A. 1999;96:7563–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Graham DJ. COX-2 inhibitors, other NSAIDs, and cardiovascular risk - the seduction of common sense. JAMA-J Am Med Assoc. 2006;296:1653–6.

    Article  CAS  Google Scholar 

  5. Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10:501–7.

    Article  CAS  PubMed  Google Scholar 

  6. Nie T, Wong CC, Alston N, Aro P, Constantinides PP, Rigas B. Phospho-ibuprofen (MDC-917) incorporated in nanocarriers: anti-cancer activity in vitro and in vivo. Br J Pharmacol. 2012;166:991–1001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Huang L, Zhu C, Sun Y, Xie G, Mackenzie GG, Qiao G, et al. Phospho-sulindac (OXT-922) inhibits the growth of human colon cancer cell lines: a redox/polyamine-dependent effect. Carcinogenesis. 2010;31:1982–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mackenzie GG, Sun Y, Huang L, Xie G, Ouyang N, Gupta RC, et al. Phospho-sulindac (OXT-328), a novel sulindac derivative, is safe and effective in colon cancer prevention in mice. Gastroenterology. 2010;139:1320–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Huang L, Mackenzie GG, Sun Y, Ouyang N, Xie G, Vrankova K, et al. Chemotherapeutic properties of phospho-nonsteroidal anti-inflammatory drugs, a new class of anticancer compounds. Cancer Res. 2011;71:7617–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zhu C, Cheng KW, Ouyang N, Huang L, Sun Y, Constantinides PP, et al. Phosphosulindac (OXT-328) selectively targets breast cancer stem cells in vitro and in human breast cancer xenografts. Stem Cells. 2012;30:2065–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sun Y, Rowehl LM, Huang L, Mackenzie GG, Vrankova K, Komninou D, et al. Phospho-ibuprofen (MDC-917) suppresses breast cancer growth: an effect controlled by the thioredoxin system. Breast Cancer Res. 2012;14:R20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Zhu R, Cheng KW, Mackenzie G, Huang L, Sun Y, Xie G, et al. Phospho-sulindac (OXT-328) inhibits the growth of human lung cancer xenografts in mice: enhanced efficacy and mitochondria targeting by its formulation in solid lipid nanoparticles. Pharm Res. 2012;29:3090–101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cheng KW, Mattheolabakis G, Wong CC, Ouyang N, Huang L, Constantinides PP, et al. Topical phospho-sulindac (OXT-328) is effective in the treatment of non-melanoma skin cancer. Int J Oncol. 2012;41:1199–203.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol. 1998;38:257–88.

    Article  CAS  PubMed  Google Scholar 

  15. Marsha S, Xiao M, Yu J, Ahluwalia R, Minton M, Freimuth RR, et al. Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics. 2004;84:661–8.

    Article  Google Scholar 

  16. Wong CC, Cheng KW, Xie G, Zhou D, Zhu CH, Constantinides PP, et al. Carboxylesterases 1 and 2 hydrolyze phospho-nonsteroidal anti-inflammatory drugs: relevance to their pharmacological activity. J Pharmacol Exp Ther. 2012;340:422–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Xie G, Nie T, Mackenzie GG, Sun Y, Huang L, Ouyang N, et al. The metabolism and pharmacokinetics of phospho-sulindac (OXT-328) and the effect of difluoromethylornithine. Br J Pharmacol. 2012;165:2152–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Xie G, Sun Y, Nie T, Mackenzie GG, Huang L, Kopelovich L, et al. Phospho-ibuprofen (MDC-917) is a novel agent against colon cancer: efficacy, metabolism, and pharmacokinetics in mouse models. J Pharmacol Exp Ther. 2011;337:876–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li B, Sedlacek M, Manoharan I, Boopathy R, Duysen EG, Masson P, et al. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem Pharmacol. 2005;70:1673–84.

    Article  CAS  PubMed  Google Scholar 

  20. Duysen EG, Koentgen F, Williams GR, Timperley CM, Schopfer LM, Cerasoli DM, et al. Production of ES1 plasma carboxylesterase knockout mice for toxicity studies. Chem Res Toxicol. 2011;24:1891–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in microsoft excel. Comput Methods Programs Biomed. 2010;99:306–14.

    Article  PubMed  Google Scholar 

  22. Mackenzie GG, Huang L, Alston N, Ouyang N, Vrankova K, Mattheolabakis G, et al. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS ONE. 2013;8:e61532.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cheng KW, Wong CC, Alston N, Mackenzie GG, Huang L, Ouyang N, et al. Aerosol administration of phospho-sulindac inhibits lung tumorigenesis. Mol Cancer Ther. 2013;12:1417–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Khanna R, Morton CL, Danks MK, Potter PM. Proficient metabolism of irinotecan by a human intestinal carboxylesterase. Cancer Res. 2000;60:472–4728.

    Google Scholar 

  25. Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res. 2000;60:1189–92.

    CAS  PubMed  Google Scholar 

  26. Guichard SM, Morton CL, Krull EJ, Stewart CF, Danks MK, Potter PM. Conversion of the CPT-11 metabolite APC to SN-38 by rabbit liver carboxylesterase. Clin Cancer Res. 1998;4:3089–94.

    CAS  PubMed  Google Scholar 

  27. Quinney SK, Sanghani SP, Davis WI, Hurley TD, Sun Z, Murry DJ, et al. Hydrolysis of capecitabine to 5’-deoxy-5-fluorocytidine by human carboxylesterases and inhibition by loperamide. J Pharmacol Exp Ther. 2005;313:1011–6.

    Article  CAS  PubMed  Google Scholar 

  28. Tabata T, Katoh M, Tokudome S, Nakajima M, Yokoi T. Identification of the cytosolic carboxylesterase catalyzing the 5’-deoxy-5-fluorocytidine formation from capecitabine in human liver. Drug Metab Dispos. 2004;32:1103–10.

    Article  CAS  PubMed  Google Scholar 

  29. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34:1274–81.

    Article  CAS  PubMed  Google Scholar 

  30. Pratt SE, Durland-Busbice S, Shepard RL, Heinz-Taheny K, Iversen PW, Dantzig AH. Human carboxylesterase-2 hydrolyzes the prodrug of gemcitabine (LY2334737) and confers prodrug sensitivity to cancer cells. Clin Cancer Res. 2013;19:1159–68.

    Article  CAS  PubMed  Google Scholar 

  31. Morton CL, Iacono L, Hyatt JL, Taylor KR, Cheshire PJ, Houghton PJ, et al. Activation and antitumor activity of CPT-11 in plasma esterase-deficient mice. Cancer Chemother Pharm. 2005;56:629–36.

    Article  CAS  Google Scholar 

  32. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384:644–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou D, Papayannis I, Mackenzie GG, Alston N, Ouyang N, Huang L, et al. The anticancer effect of phospho-tyrosol-indomethacin (MPI-621), a novel phosphoderivative of indomethacin: in vitro and in vivo studies. Carcinogenesis. 2012;34:943–51.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Institutes of Health (NIH) National Cancer Institute (NCI): Grant 5R01CA154172 and the Department of Defense (DOD): Grant W81XWH 11-1-0799. Conflict of interest. The authors have nothing to disclose except for Basil Rigas, who has an equity position in Medicon Pharmaceuticals, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Rigas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 32 kb)

Supplementary Table 2

(DOC 32 kb)

Supplementary Table 3

(DOC 32 kb)

Supplementary Figure 1

(TIFF 821 kb)

High Resolution (GIF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.C., Cheng, KW., Papayannis, I. et al. Phospho-NSAIDs Have Enhanced Efficacy in Mice Lacking Plasma Carboxylesterase: Implications for their Clinical Pharmacology. Pharm Res 32, 1663–1675 (2015). https://doi.org/10.1007/s11095-014-1565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1565-2

KEY WORDS

Navigation