Skip to main content
Log in

Effect of the magnetic field structure on the intensity of electron cyclotron emission from the plasma of the L-2M stellarator

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the influence of the stellarator magnetic field structure on the plasma behavior in electron-cyclotron resonance regimes with a high heating power per electron. The magnetic field structure was changed by varying the induction current I p from −14 to +14 kA. The plasma electrons were heated at the second harmonic of the electron gyrofrequency by an X-mode microwave beam with a power of P ∼ 200 kW, the average plasma density being in the range n e = (0.5–2) × 1013 cm−3. At I p = 0, the rotational transform varies from \(\rlap{--} \iota \)(0) = 0.2 on the magnetic axis to 0.8 at the plasma boundary. At a positive current of I p = 13.5 kA, the rotational transform was \(\rlap{--} \iota \)(0) = 0.8 on the axis and \(\rlap{--} \iota \)(a p) = 0.9 at the plasma boundary. Experiments with a positive current have shown that the radiative temperature first increases with current. When the current increases to I p = 11–14 kA, strong modulation appears in the electron cyclotron emission signals received from all the plasma radii, the emission spectrum changes, and the emission intensity decreases. At a negative current of I p = −(6.5–13.5) kA, the rotational transform vanishes at r/a p = 0.4–0.6. In this regime, the number of suprathermal electrons is reduced substantially and the emission intensity decreases at both low and high plasma densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujisawa, Plasma Phys. Controlled Fusion 44, A1 (2002).

    Article  ADS  Google Scholar 

  2. T. Fujita, Plasma Phys. Controlled Fusion 44, A19 (2002).

    Article  ADS  Google Scholar 

  3. A. Fujisawa, Plasma Phys. Controlled Fusion 45, R1 (2003).

    Article  ADS  Google Scholar 

  4. S. Gunter, R. Wolf, F. Leuterer, et al., Phys. Rev. Lett. 84, 3097 (2000).

    Article  ADS  Google Scholar 

  5. R. Brakel, M. Anton, J. Baldzuhn, et al., Plasma Phys. Controlled Fusion 39, B273 (1997).

    Article  ADS  Google Scholar 

  6. D. K. Akulina, G. M. Batanov, M. S. Berezhetskiĭ, et al., Fiz. Plazmy 29, 1108 (2003) [Plasma Phys. Rep. 29, 1028 (2003)].

    Google Scholar 

  7. A. Fujisawa, H. Iguchi, T. Minami, et al., Phys. Rev. Lett. 82, 2669 (1999).

    Article  ADS  Google Scholar 

  8. T. Minami, A. Fujisawa, H. Iguchi, et al., Plasma Phys. Controlled Fusion 44, A197 (2002).

    Article  ADS  Google Scholar 

  9. T. Minami, A. Fujisawa, H. Iguchi, et al., Nucl. Fusion 44, 342 (2004).

    Article  ADS  Google Scholar 

  10. H. Maassberg, C. Beidler, U. Gasparino, et al., Phys. Plasmas 7, 295 (2000).

    Article  ADS  Google Scholar 

  11. T. Shimozuma, S. Kubo, H. Idei, et al., Plasma Phys. Controlled Fusion 45, 1183 (2003).

    Article  ADS  Google Scholar 

  12. K. Ida, T. Shimozuma, H. Funaba, et al., Phys. Rev. Lett. 91, 085003 (2003).

  13. K. Yamazaki, T. Minami, K. Narihara, et al., J. Plasma Fusion Res. SERIES 5, 611 (2002).

    Google Scholar 

  14. C. Alejaldre, J. Alonso, L. Almoguera, et al., Plasma Phys. Controlled Fusion 41, A539 (1999).

    Article  ADS  Google Scholar 

  15. F. Castejon, V. Tribaldos, I. Garcia-Cortes, et al., Nucl. Fusion 42, 271 (2002).

    Article  ADS  Google Scholar 

  16. J. A. Romero, D. Lopez-Bruna, A. Lopez-Fraguaz, and E. Ascasibar, Nucl. Fusion 43, 387 (2003).

    Article  ADS  Google Scholar 

  17. T. Estrada, E. de la Luna, E. Ascasibar, et al., Plasma Phys. Controlled Fusion 44, 1615 (2002).

    Article  ADS  Google Scholar 

  18. T. Estrada, L. Krupnik, N. Dreval, et al., Plasma Phys. Controlled Fusion 46, 277 (2004).

    Article  ADS  Google Scholar 

  19. K. Ida, N. Ohyabu, T. Morisaki, et al., Phys. Rev. Lett. 88, 015002 (2002).

  20. S. Grebenshchikov, D. Akulina, G. Batanov, et al., in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, ECA 27A, P-4.2 (2003).

    Google Scholar 

  21. S. E. Grebenshchikov, B. I. Kornev, and I. S. Shpigel’, Fiz. Plazmy 8, 458 (1982) [Sov. J. Plasma Phys. 8, 256 (1982)].

    Google Scholar 

  22. D. Akulina, G. Batanov, M. Berezhetskii, et al., in Proceedings of the 12th Workshop on ECE and ECRH, Aixon-Provence, 2002, p. 413.

  23. D. K. Akulina, G. A. Gladkov, Yu. I. Nechaev, and O. I. Fedyanin, Fiz. Plazmy 23, 32 (1997) [Plasma Phys. Rep. 23, 28 (1997)].

    Google Scholar 

  24. A. S. Sakharov and M. A. Tereshchenko, Fiz. Plazmy 28, 584 (2002) [Plasma Phys. Rep. 28, 539 (2002)].

    Google Scholar 

  25. M. Lontano, R. Pozzoli, and E. Suvorov, Nuovo Cimento B 63, 529 (1981).

    Article  ADS  Google Scholar 

  26. D. K. Akulina, O. B. Smolyakova, and E. V. Suvorov, Fiz. Plazmy 14, 649 (1988) [Sov. J. Plasma Phys. 14, 381 (1988)].

    Google Scholar 

  27. O. Fedyanin, D. Akulina, G. Batanov, et al., in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, ECA 27A, P-4.3 (2003).

    Google Scholar 

  28. E. Barbato, Plasma Phys. Controlled Fusion 43, A287 (2001).

    Article  ADS  Google Scholar 

  29. A. V. Knyazev, A. A. Letunov, and V. P. Longvinenko, Prib. Tekh. Éksp., No. 2, 105 (2004).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.K. Akulina, G.A. Gladkov, S.E. Grebenshchikov, O.I. Fedyanin, S.V. Shchepetov, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 6, pp. 502–516.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akulina, D.K., Gladkov, G.A., Grebenshchikov, S.E. et al. Effect of the magnetic field structure on the intensity of electron cyclotron emission from the plasma of the L-2M stellarator. Plasma Phys. Rep. 32, 461–474 (2006). https://doi.org/10.1134/S1063780X0606002X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X0606002X

PACS numbers

Navigation