Skip to main content
Log in

New method for visualization of silica phytoliths in Sorghum bicolor roots by fluorescence microscopy revealed silicate concentration-dependent phytolith formation

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Silica phytoliths are microscopic structures of amorphous hydrated silica (SiO2·nH2O) formed by specialized plant cells. Besides their biological roles, physical, chemical, and structural properties of biogenic silica offer a wide spectrum of applications in many fields of industry and technology. Therefore, processes involved in their formation recently become a very interesting topic to study. However, optical transparency and microscopic sizes of silica phytoliths do not allow their visualization and localization by classical light microscopy methods. Their observation thus requires phytolith isolation, technically difficult or lengthy sample preparation procedures, or a work with toxic chemicals. In this paper we are proposing a novel method for visualization of silica phytoliths in Sorghum bicolor root endodermal cells by fluorescence microscopy using alkali mounting solution (pH 12). This method offers an easy and quick preparation of the samples and high contrast imaging. Based on our results we can assume that the proposed fluorescent method for silica phytolith investigation allows observation of multiple samples in relatively short time period and thus might be applicable also for high-throughput screenings. Using this method we found out that after a 3-day cultivation of sorghum plants the minimal needed concentration of sodium silicate, limiting the formation of silica phytoliths in the root endodermis, was 25 µmol dm−3. The positive correlation of sodium silicate concentration in the substrate with the phytolith diameter was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balakhnina TI, Matichenkov VV, Wlodarczyk T, Borkowska A, Nosalewicz M, Fomina IR (2012) Effects of silicon on growth processes and adaptive potential of barley plants under optimal soil watering and flooding. Plant Growth Regul 67:35–43

    Article  CAS  Google Scholar 

  • Bauer P, Elbaum R, Weiss IM (2011) Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746–756

    Article  CAS  PubMed  Google Scholar 

  • Belton DJ, Patwardhan SV, Annenkov VV, Danilovtseva EN, Perry CC (2008) From biosilicification to tailored materials: optimizing hydrophobic domains and resistance to protonation of polyamines. P Natl Acad Sci USA 105:5963–5968

    Article  CAS  Google Scholar 

  • Benvenuto ML, Fernández-Honaine M, Osterrieth ML (2013) Amorphous silica biomineralizations in Polytrichum strictum Menzies ex Brid. (Bryophyta). J Bryol 35:112–118

    Article  Google Scholar 

  • Blecher IC, Seidel R, Thomann R, Speck T (2012) Comparison of different methods for the detection of silica inclusions in plant tissues. Int J Plant Sci 173:229–238

    Article  CAS  Google Scholar 

  • Cabanes D, Weiner S, Shahack-Gross R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci 38:2480–2490

    Article  Google Scholar 

  • Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112

    Article  CAS  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot Lond 100:1383–1389

    Article  CAS  Google Scholar 

  • Dayanandan P, Kaufman PB, Franklin CI (1983) Detection of silica in plants. Am J Bot 70:1079–1084

    Article  CAS  Google Scholar 

  • Fernández-Honaine M, Zucol AF, Osterrieth ML (2006) Phytolith assemblages and systematic associations in grassland species of the South-eastern Pampean plains, Argentina. Ann Bot Lond 98:1155–1165

    Article  Google Scholar 

  • Fernández-Honaine M, Borrelli NM, Osterrieth M, Del Rio L (2013) Amorphous silica biomineralizations in Schoenoplectus californicus (Cyperaceae): their relation with maturation stage and silica availability. Bol Soc Argent Bot 48:247–259

    Google Scholar 

  • Foo CWP, Huang J, Kaplan DL (2004) Lessons from seashells: silica mineralization via protein templating. Trends Biotechnol 22:577–585

    Article  CAS  PubMed  Google Scholar 

  • Gong N, Wiens M, Schröder HC, Mugnaioli E, Kolb U, Müller WE (2010) Biosilicification of loricate choanoflagellate: organic composition of the nanotubular siliceous costal strips of Stephanoeca diplocostata. J Exp Biol 213:3575–3585

    Article  CAS  PubMed  Google Scholar 

  • Gröger C, Lutz K, Brunner E (2008) Biomolecular self-assembly and its relevance in silica biomineralization. Cell Biochem Biophys 50:23–39

    Article  PubMed  Google Scholar 

  • Gröger C, Lutz K, Brunner E (2009) NMR studies of biomineralisation. Prog Nucl Mag Res Sp 54:54–68

    Article  Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxová M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749

    Article  CAS  PubMed  Google Scholar 

  • He H, Veneklaas EJ, Kuo J, Lambers H (2014) Physiological and ecological significance of biomineralization in plants. Trends Plant Sci 19:166–174

    Article  CAS  PubMed  Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot Lond 96:1027–1046

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant Microtechnique. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  • Klančnik K, Vogel-Mikuš K, Gaberščik A (2014) Silicified structures affect leaf optical properties in grasses and sedge. J Photoch Photobio B 130:1–10

    Article  Google Scholar 

  • Law C, Exley C (2011) New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol 11:112–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu H, Liu K (2003) Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar Coast Shelf Sci 58:587–600

    Article  Google Scholar 

  • Lux A, Luxová M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441

    Article  CAS  Google Scholar 

  • Neethirajan S, Gordon R, Wang L (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 27:461–467

    Article  CAS  PubMed  Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham(Md.)

    Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440

    Article  Google Scholar 

  • Richmond K, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  CAS  PubMed  Google Scholar 

  • Sangster AG, Parry DW (1975) Endodermal silicification in mature, nodal roots of Sorghum bicolor (L.) Moench. Ann Bot Lond 40:373–379

    Google Scholar 

  • Song Z, Wang H, Strong PJ, Li Z, Jiang P (2012) Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: implications for biogeochemical carbon sequestration. Earth-Sci Rev 115:319–331

    Article  CAS  Google Scholar 

  • Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14:2059–2065

    Article  CAS  Google Scholar 

  • Sun Q, Vrieling EG, Van Santen RA, Sommerdijk NAJM (2004) Bioinspired synthesis of mesoporous silicas. Curr Opin Solid St M 8:111–120

    Article  CAS  Google Scholar 

  • Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52–58

    Article  Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29

    Article  CAS  Google Scholar 

  • Wüst RAJ, Bustin RM (2003) Opaline and Al–Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance. Chem Geol 200:267–292

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Grant Agency (VEGA 1/0817/12); by the Slovak Research and Development Agency under contract No. APVV-0140-10 and by Comenius University grant UK/394/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Soukup.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soukup, M., Martinka, M., Cigáň, M. et al. New method for visualization of silica phytoliths in Sorghum bicolor roots by fluorescence microscopy revealed silicate concentration-dependent phytolith formation. Planta 240, 1365–1372 (2014). https://doi.org/10.1007/s00425-014-2179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2179-y

Keywords

Navigation