Skip to main content
Log in

Investigation of thermal and deformation properties of quartzite in a temperature range of polymorphous α-β transition by neutron diffraction and acoustic emission methods

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The results of combined application of the neutron diffraction and acoustic emission methods for investigation of the physical properties of synthetic quartz and natural quartzite in a temperature range of α-β transition are given. In experiments, the quartzite sample was exposed to heating and uniaxial compression. Changes of the lattice spacings in quartzite were measured in a temperature range 540–620°C. On the basis of these measurements, the inner inner stresses are evaluated and found to exceed the applied stresses by several times. It is found that after the phase transition is finished, short bursts of acoustic emission (AE) occur which are two orders of magnitude more intense than the acoustic emissions produced by thermal cracking of the sample while the sample is heating up to the transition temperatures. An assumption is made that the anomalous behavior of the physical properties of quartz-containing rocks under relatively low pressures near the transition temperature can cause the formation of strong concentrators of local stresses comparable with the breaking point of the material, thereby initiating microcracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Sobolev and A. N. Nikitin, “Neutronography in Geophysics,” Fiz. Elem. Chastits At. Yadra 32(6), 1359–1404 (2001) [Phys. At. Nucl. 32 (6), 736–761 (2001)].

    Google Scholar 

  2. A. N. Nikitin and T. I. Ivankina, “Neutronographyin in Earth Sciences,” Fiz. Elem. Chastits At. Yadra 35(2), 348–407 (2004) [Phys. At. Nucl. 35 (2), 193–224 (2004)].

    Google Scholar 

  3. V. A. Kalinin, M. V. Rodnik, and I. S. Tomashevskii, Geodynamical Effects of Physicochemical Transformations in Solid Medium (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  4. A. G. Smagin and M. Ya. Yaroslavskii, “Piezoelectricity of Quartz and Quartz Resonators” (Energiya, Moscow, 1970).

    Google Scholar 

  5. V. G. Zubov and M. M. Firsova, “On Features of Quartz Elastic Behavior in α-β-Transfer Range,” Kristallografiya 7(3), 469–471 (1962).

    Google Scholar 

  6. T. I. Ivankina et al., “Influence of Texture Transfers within Insertions on Elastic Medium State,” Fiz. Zemli, No. 6, 95–103 (1993).

  7. T. D. Shermergor and V. B. Yakovlev, “Stress Concentration on Plane Surface in Texture Geophysical Media,” Fiz. Zemli, No. 1, 81–89 (1998).

  8. A. N. Nikitin and I. K. Arkhipov, “Simulation of Texture Formation in Quartz-Containing Rocks at Phase Transfer Temperature,” Fiz. Zemli, No. 12, 29–40 (1992).

  9. G. M. Mironova, in Proceedings of NSHP-II Conference, Dubna, 1999, p. 82.

  10. A. H. Jay, Proc. R. Soc. London, Ser. A 142, 237–247 (1933).

    ADS  Google Scholar 

  11. V. G. Zubov, “On Temperature Trend of Quartz Elastic Constants,” Dokl. Akad. Nauk SSSR 107(3), 392–393 (1956) [Sov. Phys. Dokl. 1, 187 (1956)].

    Google Scholar 

  12. V. G. Zubov and M. M. Firsova, “On Elastic Properties of High-Temperature β-Quartz,” Dokl. Akad. Nauk SSSR 109(3), 493–494 (1956) [Sov. Phys. Dokl. 1, 441 (1956)].

    Google Scholar 

  13. A. F. Wright and S. Lehmann, “The Structure of Quartz at 25 and 590°C Determined by Neutron Diffraction,” J. Solid State Chem. 36, 371–380 (1981).

    Google Scholar 

  14. H. Boysen et al., “Dynamic Structure Determination for Two Interacting Models at the M-point in α-and β-Quartz by Inelastic Neutron Scattering,” J. Phys. C 13, 6127–6146 (1980).

    Article  ADS  Google Scholar 

  15. G. Dolino, J. P. Bachheimer, and C. M. E. Zeyen, “Observation of an Intermediate Phase near the α-β Transition of Quartz by Heat Capacity and Neutron Scattering Measurements,” Solid State Commun. 45(3), 295–299 (1983).

    Article  Google Scholar 

  16. B. Berge et al., “Incommensurate Phase of Quartz. I: Elastic Neutron Scattering,” J. Phys. (Paris) 45, 361–371 (1984).

    ADS  Google Scholar 

  17. B. Berge et al., “Incommensurate Phase of Quartz. II: Brillouin Scattering Studies,” J. Phys. (Paris) 45, 715–724 (1984).

    ADS  Google Scholar 

  18. B. Berge et al., “Incommensurate Phase of Quartz. III: Study of the Coexistence State between the Incommensurate and the α-Phases by Neutron Scattering and Electron Microscopy,” J. Phys. (Paris) 45, 901–912 (1984).

    ADS  Google Scholar 

  19. V. L. Aksenov et al., J. Neutron Res. 5, 181–200 (1997).

    Google Scholar 

  20. V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).

    Google Scholar 

  21. K. Kihara, “An X-ray Study of the Temperature Dependence of the Quartz Structure,” Eur. J. Mineral. 2, 63–77 (1990).

    Google Scholar 

  22. K. Ullemeyer et al., “The SKAT Texture Diffractometer at the Pulsed Reactor IBR-2 at Dubna: Experimental Layout and First Measurements,” Nucl. Instrum. Methods Phys. Res. A 412, 80–88 (1998).

    Article  Google Scholar 

  23. T. I. Ivankina et al., “Influence of Temperature and Sustained Stress on Deformation, Thermal and Texture Characteristics of Marble,” Fiz. Zemli, No. 1, 50–63 (2001).

  24. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  25. I. Yu. Ievlev, “Features of Acoustical Emission Parameters at Thermoelastic Martensite Reaction,” Fiz. Tverd. Tela 15(9), 2647–2650 (1973) [Sov. Phys. Solid State 15 (9), 1761–1763 (1973)].

    Google Scholar 

  26. G. A. Sobolev, Kh. O. Asatryan, and B. G. Salov, “Acoustical Emission at Material Destruction,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 1, 38–43 (1989).

  27. V. A. Kalinin, I. S. Tomashevskii, and M. I. Greblov, “Acoustical Emission at Phase Transformations,” in Physics of Rocks at High Pressures: Collection (Moscow, 1991), pp. 128–133.

  28. V. A. Kalinin, R. M. Nasimov, and I. O. Bayuk, “Acoustical Emission at Phase Transformation in Rubidium Chloride,” Fiz. Zemli, No. 10 (1997).

  29. M. A. Petrovskii, L. L. Panass’yan, V. B. Khromova, “Emission Effects of Memory in Rocks at Heating,” Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli, No. 10, 105–108 (1987).

  30. A. N. Nikitin et al., “Anisotropy and Texture of Peridot-Containing Mantle Rocks at High Pressures,” Fiz. Zemli, No. 1, 64–78 (2001).

  31. H. Kern, “Effect of High-Low Quartz Transition on Compressional and Shear Wave Velocities in Rocks under High Pressure,” Phys. Chem. Miner. 4, 161–171 (1979).

    Article  Google Scholar 

  32. G. A. Sobolev et al., “Excitation of Acoustical Emission by Elastic Impulses,” Fiz. Zemli, No. 1, 79–84 (2001).

  33. Ph. Meredith et al., “The Microscopic Origin of Thermal Cracking in Rocks: an Investigation by Simultaneous Time-of-Flight Neutron Diffraction and Acoustic Emission Monitoring,” Geophys. Res. Lett. 28(10), 2105–2108 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Nikitin, R.N. Vasin, A.M. Balagurov, G.A. Sobolev, A.V. Ponomarev, 2006, published in Piss’ma v zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2006, No. 1 (130), pp. 76–91.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, A.N., Vasin, R.N., Balagurov, A.M. et al. Investigation of thermal and deformation properties of quartzite in a temperature range of polymorphous α-β transition by neutron diffraction and acoustic emission methods. Phys. Part. Nuclei Lett. 3, 46–53 (2006). https://doi.org/10.1134/S1547477106010067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477106010067

Keywords

Navigation