Skip to main content
Log in

Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts

  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

The organic-walled, hypnozygotic cysts of dinoflagellates (“dinocysts”) provide a rich, albeit incomplete, history of this eukaryotic plankton group in ancient sediments. Building on pioneering studies of the late 1970s and 1980s, recent ocean drilling and more detailed, integrated studies of surface sections have provided a wealth of dino-cyst data spanning the entire Paleogene. Based on multidisciplinary approaches, these studies have been instrumental in refining existing and furnishing new concepts of Paleogene paleoenvironmental and paleoclimatic reconstructions by means of dinocysts. Since dinocysts typically exhibit high abundances in neritic settings, the dinoeyst-based environmental and paleoclimatic information is complementary to that derived from typically more offshore groups such as planktonic foraminifera, coccolithophorids, diatoms, and radiolaria. While in a recent paper we gave a broad overview of case studies from around the globe (Sluijs et al. 2005), here we focus on a summary of these analyses and present a synopsis of applied paleoecological concepts in Paleogene (65–24 ma) dinocyst studies. Representing Earth’s greenhouse-icehouse transition, this episode holds the key to the understanding of extreme transient climatic change. The present paper offers guidelines for the application of dinocyst palaeoecology to the reconstruction of Paleogene sea-surface productivity, temperature, salinity, stratification, and paleo-oxygenation as well as their application in sequence stratigraphy, oceanic circulation and general watermass reconstructions.

Kurzfassung

Die organischwandigen, hypnozygoten Zysten von Dinoflagellaten („Dinozysten“) spiegeln die Entwicklung dieser eukaryoten Planktongruppe in der Erdgeschichte wider, wobei dieser Fossilbericht allerdings nicht vollständig ist, da er auf Zysten beruht. Aufbauend auf ersten richtungsweisenden Arbeiten der späten 70er und 80er Jahre haben neue, integrierende Untersuchungen an marinen Kernbohrungen und Landaufschlüssen zu einer Fülle neuer Erkenntnisse über Dinozysten des gesamten Paläogens geführt. Diese waren maßgeblich daran beteiligt, dass bestehende Vorstellungen zur Paläoumwelt- und Paläoklimaentwicklung des Paläogens verfeinert und neue Vorstellungen entwickelt werden konnten. Da Dinozysten üblicher Weise in neritischen Ablagerungsräumen häufig vorkommen, liefern die aus ihnen abgeleiteten Paläoumwelt- und Paläoklimasignale eine wertvolle Ergänzung zu den Signalen von Planktongruppen mit eher offenmarinem Verbreitungsschwerpunkt wie planktischen Foraminiferen, Coccolithophoriden, Diatomeen und Radiolarien. Da der Zeitraum des Paläogens den Übergang vom Treibhaus- zum Eishausklima der Erde umfasst, spielt er eine Schlüsselrolle zum Verständnis extremen Klimawandels auf kurzfristigen Zeitskalen. In einem vor kurzem erschienenen Beitrag (Sluijs et al. 2005) gaben wir einen Überblick über Fallstudien zur Dinozysten-Ökologie aus dem Paläogen (65–24 ma) beider Hemisphären. Der vorliegende Beitrag präsentiert eine Zusammenfassung dieser Fallstudien und gibt eine Synopsis der verwendeten paläoökologischen Konzepte. Er bietet Leitlinien für die Verwendung der Paläoökologie von Dinozysten zur Rekonstruktion von Ober-flächenwasserproduktivität, -temperatur, -Salzgehalt, -stratifizierung, zur Rekonstruktion der Sauerstoff Versorgung sowie zur Nutzung dieser Signale in der Sequenzstratigraphic und bei der Rekonstruktion ozeanischer Zirkulationsmuster während des Paläogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.M.;Taylor, C.D. &Armbrust, E.V. 1987. The effects of darkness and anaerobiosis on dinoflagellate cyst germination. — Limnology and Oceanography32: 340–351.

    Article  Google Scholar 

  • Backer, L.C.;Fleming, L.E.;Rowan, A.;Cheng, Y.-S.;Benson, J.;Pierce, R.H.;Zaias, J.;Bean, J.;Bossart, G.D.;Johnson, D.;Quimbo, R. &Baden, D.G. 2003. Recreational exposure to aerosolized brevetoxins during Florida red tide events. — Harmful Algae2: 19–28.

    Article  Google Scholar 

  • Berger, W.H.;Smetacek, V.S. &Wefer, G. 1989. Ocean productivity and paleoproductivity — an overview. — In:Berger, W.H.;Smetacek, V.S. &Wefer, G., eds., Productivity of the Ocean: Present and Past. — Life Sciences Research Report44: 1–34.

    Article  Google Scholar 

  • Bradford, M.R. &Wall, D.A. 1984. The distribution of Recent organic-walled dinoflagellate cysts in the Persian Gulf, Gulf of Oman, and northwestern Arabian Sea. — Palaeontographica192: 16–84.

    Google Scholar 

  • Brasier, M.D. 1985. Fossil indicators of nutrient levels. 1. eutrophication and climate change — In:Bosence, D.W.J. &Allison, P.A., eds., Marine Palaeoenvironmental analysis from Fossils. — Geological Society of London, Special Publication83: 113–132.

    Article  Google Scholar 

  • Brinkhuis, H. 1994. Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy); bio-stratigraphy and palaeoenvironmental interpretation. — Palaeoge-ography, Palaeoclimatology, Palaeoecology107: 121–163.

    Article  Google Scholar 

  • Brinkhuis, H. &Biffi, U. 1993. Dinoflagellate cyst stratigraphy of the Eocene/Oligocene transition in Central Italy. — Marine Micropa-leontology22: 131–183.

    Article  Google Scholar 

  • Bucefalo-Palliani, R.;Mattioli, E. &Riding, J.B. 2002. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. — Marine Micropaleontology46: 223–245.

    Article  Google Scholar 

  • Cembella, A.D.;Quilliam, M.A.;Lewis, N.I.;Bauder, A.G., Dell’Aversano, C.;Thomas, K.;Jellett, J. &Cusack, R.R. 2002. The toxigenic marine dinoflagellateAlexandrium tama-rense as the probable cause of mortality of caged salmon in Nova Scotia. — Harmful Algal Blooms1: 313–325.

    Article  Google Scholar 

  • Crouch, E.M. 2001. Environmental change at the time of the Paleocene-Eocene biotic turnover. — University of Utrecht Laboratory of Palaeobotany and Palynology Contribution Series14: 1–216.

    Google Scholar 

  • Dale, B. 1983. Dinoflagellate resting cysts: “Benthic plankton”. — In:Fryxell, G.A., ed., Survival Strategies of the Algae: 69–136, Cambridge (Cambridge University Press).

    Google Scholar 

  • Dale, B. 1996. Dinoflagellate cyst ecology: Modeling and geological applications. — In:Jansonius, J. &McGregor, D.C., eds., Palynology: Principles and Applications: 1249–1276, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Dale, B. &Dale, A.L. 1992. Dinoflagellate contributions to the deep sea. — Ocean Biocoenosis Series5: 1–77.

    Google Scholar 

  • Dale, B. &Fjellså, A. 1994. Dinoflagellate cysts as paleoproductivity indicators: State of the art, potential and limits. — In:Zahn, R.;Pedersen, T.F.;Kaminski, M.A. &Labeyrie, L., eds., Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change: 521–537, Berlin (Springer).

    Google Scholar 

  • de Vernal, A.;Turon, L. &Guiot, J. 1994. Dinoflagellate distribution in high-lattitude marine environments and quantitative reconstruction of sea-surface salinity, temperature and seasonality. — Canadian Journal of Earth Sciences31: 48–62.

    Article  Google Scholar 

  • Dybkjaer, K. 2004. Morphological and abundance variations inHomotryblium-cyst assemblages related to depositional environments; uppermost Oligocene — Lower Miocene, Jylland, Den-mark. — Palaeogeography, Palaeoclimatology, Palaeoecology206: 41–58.

    Article  Google Scholar 

  • Fensome, R.A.;Taylor, F.J.R.;Norris, G.;Sarjeant, W.A.S.;Wharton, D.I. &Williams, G.L. 1993. A Classification of Fossil and Living Dinoflagellates. — Micropaleontology, Special Publication7: 1–351.

    Google Scholar 

  • Goodman, D.K. 1987. Dinoflagellate cysts in ancient and modern sediments. — In:Taylor, F.J.R., ed., The Biology of Dinoflagellates. — Botanical Monographs21: 649–722.

    Google Scholar 

  • Gradstein, F.M.;Kristiansen, I.L.;Loemo, L. &Kaminski, M.A. 1992. Cenozoic foraminiferal and dinoflagellate cyst biostratigra-phy of the central North Sea. — Micropaleontology38: 101–137.

    Article  Google Scholar 

  • Hochuli, P.A. &Frank, S.M. 2000. Palynology (dinoflagellate cysts, spores, and pollen) and stratigraphy of the Lower Carnian Raibl Group. — Eclogae Geologicae Helvetiae93: 429–443.

    Google Scholar 

  • Haq, B.U.;Hardenbol, J. &Vail, P.R. 1987. Chronology of fluctuating sea levels since the Triassic. — Science235: 1156–1167.

    Article  Google Scholar 

  • Head, M.J. 1996. Modern dinoflagellate cysts and their biological affinities. — In:Jansonius, J. &McGregor, D.C., eds., Palynology: principles and applications: 1197–1248, Dallas (American Association of Stratigraphic Palynologists Foundation).

    Google Scholar 

  • Jarvis, I.;Carson, G.A.;Cooper, M.K.E.;Hart, M.B.;Leary, P.N.;Tocher, B.A.;Hörne, D. &Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) Oceanic Anoxic Event (OAE). — Cretaceous Research9: 3–103.

    Article  Google Scholar 

  • Leckie, D.A.;Singh, C.;Bloch, J.;Wilson, M. &Wall, J. 1992. An anoxic event at the Albian-Cenomanian boundary: the Fish Scale Marker Bed, northern Alberta, Canada. — Palaeogeography, Palaeoclimatology,Palaeoecology92: 139–166.

    Article  Google Scholar 

  • Lentin, J.K. &Williams, G.L. 1980. Dinoflagellate provincialism with emphasis on Campanian peridiniaceans. — American Association of Stratigraphic Palynologists, Contribution Series7: 1–47.

    Google Scholar 

  • Lewis, J.;Ellegaard, M.;Hallett, R.;Harding, I. &Rochon, A. 2003. Environmental control of cyst morphology in gonyaulaeoid dinoflagellates. — In:Matsuoka, K.;Yoshida, M. &Iwataki, M., eds., Dino7, Seventh International Conference on Modern and fossil Dinoflagellates, Nagasaki, Japan, Abstract Volume, Additional abstract.

  • MacRae, R.A.;Fensome, R.A. &Williams, G.L. 1996. Fossil dinoflagellate diversity, originations, and extinctions and their significance. — Canadian Journal of Botany74: 1687–1694.

    Article  Google Scholar 

  • Marshall, K.L. &Batten, D.J. 1988. Dinoflagellate cyst associations in Cenomanian-Turonian “black shale” sequences of northern Europe. — Review of Palaeobotany and Palynology54: 85–103.

    Article  Google Scholar 

  • Matthiessen, J.;de Vernal, A.;Head, M.;Okolodkov, Y.;Zon-Neveld, K. &Harland, R. 2005. Modern organic-walled dinoflagellate cysts in Arctic marine environments and their (paleo-) environmental significance. — Paläontologische Zeitschrift79 (1): 3–51.

    Google Scholar 

  • Norris, G. 1965. Provincialism of Callovian-Neocomian dinoflagellate cysts in the northern and southern hemispheres. — American Association of Stratigraphic Palynologists, Contribution Series4: 29–35.

    Google Scholar 

  • Patten, B.C. 1962. Species diversity in net phytoplankton of Raritan Bay. — Journal of Marine Research20: 57–75.

    Google Scholar 

  • Powell, A.J.;Lewis, J. &Dodge, J.D. 1992. The palynological expressions of post-Paleogene upwelling: a review. — In:Summer-Hayes, C.P.;Prell, W.L. &Emeis, K.C., eds., Upwelling Systems: Evolution since the Early Miocene: 215–226, London (The Geological Society).

    Google Scholar 

  • Pross, J. 2001. Paleo-oxygenation in Tertiary epeiric seas: Evidence from dinoflagellate cysts. — Palaeogeography, Palaeoclimatology, Palaeoecology166: 369–381.

    Article  Google Scholar 

  • Pross, J. &Schmiedl, G. 2002. Early Oligocene dinoflagellate cysts from the Upper Rhine Graben (SW Germany): Paleoenvironmental and paleoclimatic implications. — Marine Micropaleontology45: 1–24.

    Article  Google Scholar 

  • Pross, J.;Kotthoff, U. &Zonneveld, K.A.F. 2004. Die Anwendung organischwandiger Dinoflagellatenzysten zur Rekonstruktion von Paläoumwelt, Paläoklima und Paläozeanographie: Möglichkeiten und Grenzen. — Paläontologische Zeitschrift78: 5–39.

    Google Scholar 

  • Reichart, G.-J. &Brinkhuis, H. 2003. Late QuaternaryProtoperidi-nium cysts as indicators of paleoproductivity in the northern Arabian Sea. — Marine Micropaleontology49: 303–370.

    Article  Google Scholar 

  • Reichart,G.-J.;Brinkhuis, H.;Huiskamp, F. &Zachariasse, W.J. 2004. Hyper-stratification following glacial overturning events in the northern Arabian Sea. — Paleoceanography19: 10.1029/2003PA000300.

  • Röhl, U.;Brinkhuis, H.;Stickley, CE.;Füller, M.;Schellenberg, S.A.;Wefer, G. &Williams, G.L. in press. Sea level and astronomically induced environmental changes in Middle and Late Eocene sediments from the East Tasman Plateau. — In:Exon, N.F.;Malone, M. &Kennett, J.P., eds., Climate evolution of the Southern Ocean and Australia’s northward flight from Ant-arctica. — American Geophysical Union Geophysical Research Series.

  • Sluijs, A.;Pross, J. &Brinkhuis, H. 2005. From greenhouse to ice-house; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. — Earth-Science Reviews68: 281–315.

    Article  Google Scholar 

  • Versteegh, G.J.M. &Zonneveld, K.A.F. 2002. Use of selective degradation to separate preservation from produetivity. — Geology30: 615–618.

    Article  Google Scholar 

  • Wall, D. &Dale, B. 1974. Dinoflagellates in late Quaternary deep-water sediments of Black Sea. — In:Degens, E.T. &Ross, D.A., eds., The Black Sea — Geology, Chemistry and Biology. — American Association of Petroleum Geologists, Memoir20: 364–380.

    Google Scholar 

  • Wall, D.;Dale, B. &Harada, K. 1973. Descriptions of new fossil dinoflagellates from the late Quaternary of the Black Sea. — Micropaleontology19: 18–31.

    Article  Google Scholar 

  • Wall, D.;Dale, B.;Lohmann, G.P. &Smith, W.K. 1977. The environmental and climatic distribution of dinoflagellate cysts in the North and South Atlantic and adjacent seas. — Marine Micropaleontology30: 319–343.

    Google Scholar 

  • Wefer, G.;Berger, W.H.;Bijma, J. &Fischer, G. 1999. Clues to ocean history: a brief overview of proxies. — In:Fischer, G. &Wefer, G., eds., Use of Proxies in Paleoceanography. Examples from the South Atlantic: 1–68, Berlin (Springer).

    Google Scholar 

  • Zachos, J.C.;Pagani, M.;Sloan, L.C.;Thomas, E. &Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to presents. — Science292: 686–693.

    Article  Google Scholar 

  • Zonneveld, K.A.F.; Versteegh, G.J.M. & De Lange, G.J. 1997. Preservation of organic-walled dinoflagellate cysts in different oxygen regimes: a 10,000 year natural experiment. — Marine Micropaleontology29: 393–405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pross, J., Brinkhuis, H. Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts. Paläontol Z 79, 53–59 (2005). https://doi.org/10.1007/BF03021753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03021753

Keywords

Schlüsselwörter

Navigation