Skip to main content
Log in

An adsorption study of hydrogen on iron and its relation to hydrogen embrittlement

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The chemical reactions of hydrogen gas on iron surfaces have been determined by simultaneously measuring the volume of gas adsorbed and the corresponding magnetization change. The combination of these experimental results as well as the kinetics of the reactions is used to explain the temperature dependence observed in crack growth studies performed in gaseous hydrogen. The reaction is shown to be a two step process involving the formation of an adsorbed molecular precursor prior to the formation of the embrittling hydrogen ion. The adsorption isotherm and magnetizationadsorption isotherm for H2 on Fe at 77 K were determined to be Langmuirian. This, plus a first order adsorption rate are given as evidence for the existence of a chemisorbed molecular H +2 precursor at this temperature. The mechanical test data of other investigators for slow crack growth in gaseous H2, which show a nonmonotonic change of crack growth rate with temperature, become explainable based on a measured decrease in the adsorption of H2 at temperature above 300 K and the two step adsorption process. At temperatures below 300 K the formation of an H- ion from the adsorbed precursor H +2 ion is the rate controlling process in gaseous hydrogen embrittlement. At temperatures above 300 K, the decreasing net adsorption rate of H +2 becomes the limiting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan:Nature, 1944, vol. 154, p. 341.

    Article  Google Scholar 

  2. N. J. Petch:Phil Mag., 1956, vol. 1, p. 331.

    Article  CAS  Google Scholar 

  3. H. W. Liu and P. J. Ficalora:Int. J. Fract. Mech., 1972, vol. 8, p. 223.

    Article  Google Scholar 

  4. G. E. Kerns and R. W. Staehle:Scr. Met., 1972, vol. 6, p. 1189.

    Article  CAS  Google Scholar 

  5. K. Sieradzki: PhD Dissertation, Syracuse University, Syracuse, NY, 1978.

    Google Scholar 

  6. V. Srikrishnan and P. J. Ficalora:Met. Trans. A, 1976, vol. 7A, p. 1669.

    Article  CAS  Google Scholar 

  7. J. D. Frandsen and H. L. Marcus:Met. Trans. A, 1977, vol. 8A, p. 265.

    Article  CAS  Google Scholar 

  8. D. P. Williams and H. G. Nelson:Met. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  9. C. Kittel:Phys. Rev., 1946, vol. 70, p. 965.

    Article  CAS  Google Scholar 

  10. C. P. Bean and J. D. Livingston:J. Appl. Phys., 1959, vol. 30, p. 1205.

    Article  Google Scholar 

  11. P. W. Selwood:Chemisorption and Magnetization, p. 35, Academic Press, NY, 1975.

    Google Scholar 

  12. M. H. Dilke, E. D. Maxted, and D. D. Eley:Nature, 1948, vol. 161, p. 804.

    Article  CAS  Google Scholar 

  13. E. N. Artyukh, N. K. Lunev, and R. T. Rusov:Kinet. Katal., 1972, vol. 13, p. 741.

    CAS  Google Scholar 

  14. L. Pecora and P. J. Ficalora:Met. Trans. A, 1977, vol. 8A, p. 1841.

    Article  CAS  Google Scholar 

  15. G. C. Bond:Catalysis by Metals, pp. 109 and 165, Academic Press, NY, 1962.

    Google Scholar 

  16. J. T. Kummer and P. H. Emmett:J. Phys. Chem., 1952, vol. 56, p. 258.

    Article  CAS  Google Scholar 

  17. C. R. Brundle:IBM J. Res. Dev., 1978, vol. 22, p. 235.

    Article  CAS  Google Scholar 

  18. M. R. Shanabarger:Surf. Sci., 1975, vol. 52, p. 689.

    Article  CAS  Google Scholar 

  19. A. S. Porter and F. C. Tompkins:Proc. Roy. Soc. London, 1953, vol. A217, p. 529.

    Google Scholar 

  20. R. P. Gangloff and R. P. Wei:Met. Trans. A, 1977, vol. 8A, p. 1043.

    Article  CAS  Google Scholar 

  21. H. H. Johnson:Hydrogen in Metals, p. 35, ASM, Metals Park, OH, 1974.

    Google Scholar 

  22. G. W. Simmons, P. S. Pao, and R. P. Wei:Met. Trans. A, 1978, vol. 9A, p. 1147.

    Article  CAS  Google Scholar 

  23. S. Foner:Rev. Set Instrum., 1959, vol. 30, p. 548.

    Article  Google Scholar 

  24. P. Flanders and W. D. Doyle:Rev. Sci. Instrum., 1962, vol. 33, p. 691.

    Article  Google Scholar 

  25. H. G. Nelson, D. P. Williams, and A. S. Tetelmann:Met. Trans., 1971, vol. 2, p. 953.

    Article  CAS  Google Scholar 

  26. J. D. Fast:Philips Tech. Rev., 1942, vol. 7, p. 74.

    Google Scholar 

  27. R. J. Walter and W. T. Chandler:Proc. Environmental Degradation of Engineering Materials, p. 513, Virginia Tech., Blacksburg, VA, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Syracuse University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ransom, C.M., Ficalora, P.J. An adsorption study of hydrogen on iron and its relation to hydrogen embrittlement. Metall Trans A 11, 801–807 (1980). https://doi.org/10.1007/BF02661209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661209

Keywords

Navigation