Skip to main content
Log in

Crack initiation and near-threshold surface fatigue crack propagation behavior of the iron-base superalloy A-286

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The fatigue behavior of the iron-base superalloy A-286 was studied at room temperature in air for three aging conditions: underaged, peak aged, and overaged. A fatigue strength at 107 cycles of about 200 MPa, independent of aging condition, was measured for an applied load ratio ofR =0.1. Surface crack initiation and propagation were measured using hourglass specimens. Surface cracks were invariably initiated in slip bands orientated between 45 and 55 deg to the load axis, and an average ratio of crack depth to crack length of about 0.45 for these semi-elliptical cracks was measured. These earliest observable short surface cracks grew at an accelerated propagation rate in the near-threshold regime but were retarded in a transition stage, resulting in a minimum in crack growth rate. This behavior was correlated to the interaction of the crack with specific microstructure features. Following this minimum, the crack growth accelerated again with increasing ΔK and appeared to converge with the crack growth behavior expected for long through cracks. The crack propagation rate at fixed ΔK was lowest in underaged, compared to peak aged and overaged microstructures. The minimum and trends in crack growth rate appeared to depend on the development of roughness-induced closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Suresh and R. O. Ritchie:Int. Metals Reviews, 1984, vol. 29, pp. 445–76.

    Google Scholar 

  2. J. Lankford:Fatigue of Engineering Materials Structures, 1982, vol. 5, pp. 233–48.

    Article  Google Scholar 

  3. C. Gerdes, A. Gysler, and G. Lütjering: inFatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., TMS- AIME, Warrendale, PA, 1984, pp. 465–78.

    Google Scholar 

  4. C. W. Brown and D. Taylor: inFatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 433–66.

    Google Scholar 

  5. W. L. Morris and M. R. James: inFatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp. 479–95.

    Google Scholar 

  6. R. F. Decker and S. Floreen: inPrecipitation from Iron-Base Alloys, Gordon and Breach, New York, NY, 1965, pp. 69–128.

    Google Scholar 

  7. D.R. Muzyka: inThe Superalloys, C.T. Sims and W. C. Hagel, eds., Wiley, New York, NY, 1972, pp. 113–43.

    Google Scholar 

  8. A. W. Thompson and J. A. Brooks:Metall. Trans A, 1975, vol. 6A, pp. 1431–42.

    CAS  Google Scholar 

  9. A.W. Thompson and J. A. Brooks:Acta Metall., 1982, vol. 30, pp. 2197–2203.

    Article  CAS  Google Scholar 

  10. M.J. Blackburn and J.C. Williams:Trans. TMS-AIME, 1967, vol. 239, pp. 287–88.

    CAS  Google Scholar 

  11. D.C. Nguyen, A.W. Thompson, and I.M. Bernstein: unpublished research, Carnegie-Mellon, Pittsburgh, PA, 1985.

  12. J. M. Silcock and N. T. Williams:J. Iron Steel Inst., 1966, vol. 204, pp. 1100–07.

    CAS  Google Scholar 

  13. F. G. Wilson and F. B. Pickering:Acta Metall., 1968, vol. 16, pp. 115–31.

    Article  Google Scholar 

  14. D. Raynor and J. M. Silcock:Metal Sci. J., 1970, vol. 4, pp. 121–30.

    CAS  Google Scholar 

  15. F. G. Wilson: inEffect of Second-Phase Particles on the Mechanical Properties of Steel, Iron and Steel Inst., London, 1971, pp. 16–21.

    Google Scholar 

  16. J.F. Knott:Fundamentals of Fracture Mechanics, 2nd ed., Butter- worths, London, 1976, pp. 61–65.

    Google Scholar 

  17. J.C. Newman, Jr.: inPart-through Crack Fatigue Life Prediction, ASTM STP 687, J. B. Chang, ed., American Society for Testing and Materials, Philadelphia, PA, 1979, pp. 16–42.

    Google Scholar 

  18. C. Verpoort: Ph.D. Thesis, University of Bochum, W. Germany, 1980.

  19. L. M. Brown and R. K. Ham: inStrengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Wiley, New York, NY, 1972, pp. 9–135.

    Google Scholar 

  20. L. K. Singhal and J.W. Martin:Acta Metall., 1968, vol. 16, pp. 947–53.

    Article  CAS  Google Scholar 

  21. D.W. Worthem: Report No. 107, “Small Crack Growth in Biaxial Fatigue≓, UILU-ENG 84-3607, University of Illinois at Urbana- Champaign, IL, June 1984.

    Google Scholar 

  22. S. Suresh and R. O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  23. N. A. Fleck, I. F.'C. Smith, and R. A. Smith:Fatigue of Engineering Materials and Structures, 1983, vol. 6, pp. 225–39.

    Article  Google Scholar 

  24. M. Jolies:Journal of Engineering Materials and Technology, 1983, vol. 105, pp. 215–18.

    Article  Google Scholar 

  25. F. Erdogan and G.C. Sih:Trans. ASME, J. Bas. Eng., 1963, vol. 85, pp. 519–27.

    Google Scholar 

  26. W. K. Wilson: “On Combined Mode Fracture Mechanics≓, Report No. 69-1E7-F MECH-R1, Westinghouse Research Labs, 1969.

  27. G.C. Sih: inMechanics of Fracture, G.C. Sih, ed., Noordhoff, Leiden, 1973, vol. 1.

    Google Scholar 

  28. A. P. Parker:The Mechanics of Fracture and Fatigue, 1st ed., E.&F.N. Spon Ltd., New York, NY, 1981, pp. 89–100.

    Google Scholar 

  29. K. Tanaka:Eng. Frac. Mech., 1974, vol. 6, pp. 443–507.

    Article  Google Scholar 

  30. W. F. Brown and J. E. Srawley:Plane Strain Crack Toughness Test- ing of High Strength Metallic Alloys, ASTM STP 410, ASTM, Philadelphia, PA, 1966.

    Google Scholar 

  31. G.C. Sih:Handbook of Stress Intensity Factors for Researchers and Engineers, Institute of Fracture and Solid Mechanics, Lehigh Uni- versity, Bethlehem, PA, 1973.

    Google Scholar 

  32. R. P. Reed, R. L. Tobler, and R. P. Mikesell: inAdvances in Cryo- genic Engineering, K. D. Timmerhaus, R. P. Reed, and A. F. Clark, eds., Plenum Press, New York, NY, 1977, vol. 22, pp. 68–79.

    Google Scholar 

  33. M. A. Daeubler and A.W. Thompson: inSmall Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 157–64.

    Google Scholar 

  34. S. Suresh and R. O. Ritchie: inFatigue Crack Growth Threshold Concepts, D. Davidson and S. Suresh, eds., TMS-AIME, Warren- dale, PA, 1984, pp. 227–61.

    Google Scholar 

  35. G.T. Gray, III, J.C. Williams, and A.W. Thompson:Metall. Trans. A, 1983, vol. 14A, pp. 421–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

M. A. DAEUBLER, formerly with Carnegie Mellon University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daeubler, M.A., Thompson, A.W. & Bernstein, I.M. Crack initiation and near-threshold surface fatigue crack propagation behavior of the iron-base superalloy A-286. Metall Trans A 19, 301–308 (1988). https://doi.org/10.1007/BF02652539

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652539

Keywords

Navigation