Skip to main content
Log in

Effect of long-term service exposure on microstructure and mechanical properties of a crmov steam turbine rotor steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of prolonged service exposure on the microstructure and mechanical properties of a 1Cr-1Mo-0.25V steam turbine rotor steel has been studied. The samples for this study were taken from four locations of a rotor which had operated for 23 years. The operating temperatures at these locations were 288 °C, 425 °C, 510 °C, and 527 °C. The impact of retempering at 677 °C of steel exposed at 425 °C was also investigated. Service exposure at 288 °C brought no noticeable changes in either tensile properties or microstructure; the steel contained coarse bainitic cementite, extremely fine spheroidal MC, and thin platelets of M2C. Service exposure at 510 °C led to profuse precipitation of cementite along grain boundaries in addition to increasing M2C precipitation. These changes resulted in a slight decrease in the yield and tensile strengths and a marginal increase in ductility. Service exposure at 527 °C produced grain boundary precipitation of M23C6, coarsening of MC, and more profuse precipitation of M2C and caused a considerable decrease in strength and an increase in ductility. Retempering at 677 °C for 24 hours resulted in more precipitation of M23C6 and considerable coarsening of MC, without affecting further the size or shape of M2C. The strength of the steel decreased drastically and the reduction in area increased considerably due to retempering. These changes in microstructure and mechanical properties indicate that service exposure at 527 °C for 23 years did not produce a stable microstructure. The microstructure and mechanical properties of the rotor steel would continue to deteriorate in future operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

VII. References

  1. L.M. Wyatt:Mater. Sci. Eng., 1971, vol. 7, pp. 237–67.

    Article  CAS  Google Scholar 

  2. N.S. Cheruvu:Metall. Trans. A, 1989, vol. 20A, pp. 87–97.

    CAS  Google Scholar 

  3. C.M. Sellers:Proc. Conf. on Creep Strength in Steel and High Temperature Alloys, Sheffield, 1972, Metals Society, London, 1973, pp. 20–30.

    Google Scholar 

  4. B.J. Cane and J.A. Williams:Int. Mater. Rev., 1987, vol. 32(5), pp. 241–62.

    CAS  Google Scholar 

  5. A.M. Abdel Latif, J.M. Corbett, and D.M.R. Taplin:Met. Sci., 1982, vol. 16, pp. 90–96.

    Google Scholar 

  6. T. Wada and V.A. Biss:Metall. Trans. A, 1983, vol. 14A, pp. 845–55.

    Google Scholar 

  7. T. Wada:ASM Metals Congress, Philadelphia, PA, Oct. 3–6, 1983, pp. 1–10.

  8. V.A. Biss and T. Wada:Metall. Trans. A, 1985, vol. 16A, pp. 109–14.

    CAS  Google Scholar 

  9. K.R. Williams and B. Wilshire:Mater. Sci. Eng., 1981, vol. 47, pp. 151–60.

    Article  CAS  Google Scholar 

  10. K.H. Kuo and C.L. Jia:Acta Metall., 1985, vol. 33, p. 991.

    Article  CAS  Google Scholar 

  11. B.A. Senior:Mater. Sci. Eng., 1988, vol. 103, p. 263.

    Article  Google Scholar 

  12. R.M. Goldhoff and H.J. Beattie, Jr.:Trans. TMS-AIME, 1985, vol. 233, p. 1743.

    Google Scholar 

  13. D.A. Miller, W.J. Plumbridge, and R.A. Bartlett:Met. Sci., 1981, vol. 15, p. 413.

    Article  CAS  Google Scholar 

  14. G.J.P. Buchi, J.H.R. Page, and M.P. Sidey:J. Iron Steel Inst., 1965, p. 291.

  15. M.C. Murphy and G.D. Branch:J. Iron Steel Inst., 1969, p. 1347.

  16. W. Zhong-Guang, K. Rakha, P. Nenomen, and C. Laird:Acta Metall., 1985, vol. 33, p. 2129.

    Article  Google Scholar 

  17. R.A. Varin and J. Haftek:Mater. Sci. Eng., 1984, vol. 62, p. 129.

    Article  CAS  Google Scholar 

  18. K.J. Kurzydlowski and W. Zielinski:Met. Sci., 1984, vol. 18, p. 223.

    Article  CAS  Google Scholar 

  19. J. Purmensky, V. Foldyna, B. Million, and J. Vrestal:Kouove Mater., 1980, vol. 18, p. 160.

    Google Scholar 

  20. N. Gope, T. Mwkherjee, and D.S. Sarma:Metall. Trans., in press.

  21. J.D. Baird and A. Jamieson:J. Iron Steel Inst., 1972, p. 841.

  22. J.D. Baird and A. Jamieson:J. Iron Steel Inst., 1972, p. 847.

  23. R.L. Klueh:Mater. Sci. Eng., 1978, vol. 35, pp. 239–53.

    Article  CAS  Google Scholar 

  24. J.H. Woodhead and A.G. Quarrel:J. Iron Steel Inst., 1965, p. 605.

  25. K.S. Kuo:J. Iron Steel Inst., 1953, vol. 173, p. 363.

    CAS  Google Scholar 

  26. Z. Qu and K.H. Kuo:Metall. Trans. A, 1981, vol. 12A, p. 1333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joarder, A., Sarma, D.S. & Cheruvu, N.S. Effect of long-term service exposure on microstructure and mechanical properties of a crmov steam turbine rotor steel. Metall Trans A 22, 1811–1820 (1991). https://doi.org/10.1007/BF02646505

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646505

Keywords

Navigation