Skip to main content
Log in

Convenient blending of alginate fibers with polyamide fibers for flame-retardant non-woven fabrics

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Blending has been applied to combine the advantages of individual fibers, but the flame retardancy of a blended fiber depends on the interaction of the components. In this work, polyamide (PA) fibers were blended with alginate fibers to obtain a blended non-woven fabric and the flame retardancy of the natural/synthetic blended fabric was highlighted. Inspiringly, the two fibers mixed uniformly by the easy-to-handle blending, and the blend’s components did not affect each other’s thermal decomposition. With the addition of 50 wt% alginate fibers, the blended fabrics achieved self-extinguishing without any melt dripping in the vertical flame test, because the melted PA was limited in the area of the charred alginate fibers in the shape of films and bladders; besides, they showed strong decreases in peak heat release rate (56%), total heat release (59%), and total smoke release (66%) compared with PA fibers in the cone calorimeter test. Alginate fibers exhibited both vapor- and condensed-phase flame-retardant activities in the blended system, which was further confirmed by thermogravimetric analysis and thermogravimetry/infrared spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi J, Carletto RA, Di Blasio A, Carosio F, Bosco F, Malucelli G (2013) DNA: a novel, green, natural flame retardant and suppressant for cotton. J Mater Chem A 1:4779–4785

    CAS  Google Scholar 

  • Boer JD, Stapleton HM (2019) Toward fire safety without chemical risk. Science 364:231–232

    PubMed  Google Scholar 

  • Bourbigot S, Flambard X, Ferreira M, Poutch F (2002) Blends of wool with high performance fibers as heat and fire resistant fabrics. J Fire Sci 20:3–22

    CAS  Google Scholar 

  • Carosio F, Di Blasio A, Cuttica F, Alongi J, Malucelli G (2014) Flame retardancy of polyester and polyester–cotton blends treated with caseins. Ind Eng Chem Res 53:3917–3923

    CAS  Google Scholar 

  • Chen Q, Yang CQ, Zhao T (2016) The chemical bonding and fire performance of the nylon/cotton blend fabrics treated with a hydroxy-functional organophosphorus oligomer. Polym Degrad Stabil 128:237–244

    CAS  Google Scholar 

  • Costes L, Laoutid F, Brohez S, Dubois P (2017) Bio-based flame retardants: when nature meets fire protection. Mater Sci Eng R Rep 117:1–25

    Google Scholar 

  • Fan S, Zhu C, Wu D, Wang X, Yu J, Li F (2020) Silicon-containing inherent flame-retardant polyamide 6 with anti-dripping via introducing ethylene glycol as the chain-linker and charring agent. Polym Degrad Stabil 173:109080

    Google Scholar 

  • Fukatsu K (2002) Thermal degradation behaviour of aromatic polyamide fiber blended with cotton fiber. Polym Degrad Stabil 75:479–484

    CAS  Google Scholar 

  • Horrocks R, Sitpalan A, Zhou C, Kandola BK (2016) Flame retardant polyamide fibres: the challenge of minimising flame retardant additive contents with added nanoclays. Polymers 8:288

    PubMed Central  Google Scholar 

  • Kundu CK, Wang X, Hou Y, Hu Y (2018) Construction of flame retardant coating on polyamide 6.6 via UV grafting of phosphorylated chitosan and sol–gel process of organo-silane. Carbohydr Polym 181:833–840

    PubMed  CAS  Google Scholar 

  • Kundu CK, Wang X, Song L, Hu Y (2020) Chitosan-based flame retardant coatings for polyamide 66 textiles: one-pot deposition versus layer-by-layer assembly. Int J Biol Macromol 143:1–10

    PubMed  CAS  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    PubMed  PubMed Central  CAS  Google Scholar 

  • Leistner M, Haile M, Rohmer S, Abu-Odeh A, Grunlan JC (2015) Water-soluble polyelectrolyte complex nanocoating for flame retardant nylon-cotton fabric. Polym Degrad Stabil 122:1–7

    CAS  Google Scholar 

  • Li L, Chen G, Liu W, Li J, Zhang S (2009) The anti-dripping intumescent flame retardant finishing for nylon-6,6 fabric. Polym Degrad Stabil 94:996–1000

    CAS  Google Scholar 

  • Li Y et al (2018) Durable flame retardant and antibacterial finishing on cotton fabrics with cyclotriphosphazene/polydopamine/silver nanoparticles hybrid coatings. Appl Surf Sci 435:1337–1343

    CAS  Google Scholar 

  • Li P, Wang B, Xu Y-J, Jiang Z, Dong C, Liu Y, Zhu P (2019a) Ecofriendly flame-retardant cotton fabrics: preparation, flame retardancy, thermal degradation properties, and mechanism. ACS Sustain Chem Eng 7:19246–19256

    CAS  Google Scholar 

  • Li X-L, Chen M-J, Chen H-B (2019b) Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels. Compos B Eng 164:18–25

    CAS  Google Scholar 

  • Li P et al (2020) Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydr Polym 237:116173

    PubMed  CAS  Google Scholar 

  • Liu Y et al (2016) Effect of reactive time on flame retardancy and thermal degradation behavior of bio-based zinc alginate film. Polym Degrad Stabil 127:20–31

    CAS  Google Scholar 

  • Liu X-H, Zhang Q-Y, Cheng B-W, Ren Y-L, Zhang Y-G, Ding C (2017) Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose 25:799–811

    Google Scholar 

  • Liu J, Xiao C (2018) Fire-retardant multilayer assembled on polyester fabric from water-soluble chitosan, sodium alginate and divalent metal ion. Int J Biol Macromol 119:1083–1089

    PubMed  CAS  Google Scholar 

  • Liu Y, Wang Q-Q, Jiang Z-M, Zhang C-J, Li Z-F, Chen H-Q, Zhu P (2018a) Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J Anal Appl Pyrol 135:289–298

    CAS  Google Scholar 

  • Liu Z, Li J, Zhao X, Li Z, Li Q (2018b) Surface coating for flame retardancy and pyrolysis behavior of polyester fabric based on calcium alginate nanocomposites. Nanomaterials 8:875

    PubMed Central  Google Scholar 

  • Liu J, Dong CH, Zhang Z, Kong DZ, Sun H, Lu Z (2020a) Multifunctional flame-retarded and hydrophobic cotton fabrics modified with a cyclic phosphorus/polysiloxane copolymer. Cellulose 27:3531–3549

    CAS  Google Scholar 

  • Liu L, Pan Y, Zhao Y, Cai W, Gui Z, Hu Y, Wang X (2020b) Self-assembly of phosphonate-metal complex for superhydrophobic and durable flame-retardant polyester–cotton fabrics. Cellulose 27:6011–6025

    CAS  Google Scholar 

  • Liu Y et al (2020c) Fully bio-based fire-safety viscose/alginate blended nonwoven fabrics: thermal degradation behavior, flammability, and smoke suppression. Cellulose 27:6037–6053

    CAS  Google Scholar 

  • Martí M, Frígols B, Salesa B, Serrano-Aroca Á (2019) Calcium alginate/graphene oxide films: reinforced composites able to prevent Staphylococcus aureusStaphylococcus aureus and methicillin-resistant Staphylococcus epidermidis infections with no cytotoxicity for human keratinocyte HaCaT cells. Eur Polym J 110:14–21

    Google Scholar 

  • Pan Y, Wang W, Liu L, Ge H, Song L, Hu Y (2017) Influences of metal ions crosslinked alginate based coatings on thermal stability and fire resistance of cotton fabrics. Carbohydr Polym 170:133–139

    PubMed  CAS  Google Scholar 

  • Qiu X, Li Z, Li X, Zhang Z (2018) Flame retardant coatings prepared using layer by layer assembly: a review. Chem Eng J 334:108–122

    CAS  Google Scholar 

  • Shao P, Xu P, Zhang L, Xue Y, Zhao X, Li Z, Li Q (2019) Non-chloride in situ preparation of nano-cuprous oxide and its effect on heat resistance and combustion properties of calcium alginate. Polymers 11:1760

    PubMed Central  CAS  Google Scholar 

  • Stockmann PN et al (2020) Biobased chiral semi-crystalline or amorphous high-performance polyamides and their scalable stereoselective synthesis. Nat Commun 11:509

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tokumura M et al (2019) Comparison of rates of direct and indirect migration of phosphorus flame retardants from flame-retardant-treated polyester curtains to indoor dust. Ecotox Environ Safe 169:464–469

    CAS  Google Scholar 

  • Wang L et al (2019) Cooking-inspired versatile design of an ultrastrong and tough polysaccharide hydrogel through programmed supramolecular interactions. Adv Mater 31:1902381

    CAS  Google Scholar 

  • Wang B, Li P, Xu Y-J, Jiang Z-M, Dong C-H, Liu Y, Zhu P (2020a) Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism. Compos B Eng 194:108038

    CAS  Google Scholar 

  • Wang B, Xu Y-J, Li P, Zhang F-Q, Liu Y, Zhu P (2020b) Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon-containing nano-coating by layer-by-layer assembly. Appl Surf Sci 509:145323

    CAS  Google Scholar 

  • Wang Q, Zhang L, Liu Y, Zhang G, Zhu P (2020c) Characterization and functional assessment of alginate fibers prepared by metal-calcium ion complex coagulation bath. Carbohydr Polym 232:115693

    PubMed  CAS  Google Scholar 

  • Wang WJ et al (2020d) Constructing eco-friendly flame retardant coating on cotton fabrics by layer-by-layer self-assembly. Cellulose 27:5377–5389

    CAS  Google Scholar 

  • Xia Z et al (2018) Fire resistant polyphenols based on chemical modification of bio-derived tannic acid. Polym Degrad Stabil 153:227–243

    CAS  Google Scholar 

  • Xu P, Shao P, Zhang Q, Cheng W, Li Z, Li Q (2019) A novel inherently flame-retardant composite based on zinc alginate/nano-Cu2O. Polymers 11:1575

    Google Scholar 

  • Zhang J, Ji Q, Shen X, Xia Y, Tan L, Kong Q (2011) Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre. Polym Degrad Stabil 96:936–942

    CAS  Google Scholar 

  • Zhang X-S, Xia Y-Z, Shi M-W, Yan X (2018) The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter. Chin Chem Lett 29:489–492

    CAS  Google Scholar 

  • Zhang X, Shi M (2019) Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles. J Hazard Mater 365:9–15

    PubMed  CAS  Google Scholar 

  • Zhao H-B, Chen L, Yang J-C, Ge X-G, Wang Y-Z (2012) A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. J Mater Chem 22:19849–19857

    CAS  Google Scholar 

  • Zhao B, Liu Y-T, Zhang C-Y, Liu D-Y, Li F, Liu Y-Q (2017) A novel phosphoramidate and its application on cotton fabrics: Synthesis, flammability and thermal degradation. J Anal Appl Pyrol 125:109–116

    CAS  Google Scholar 

  • Zhao H, Tian M, Hao Y, Qu L, Zhu S, Chen S (2018) Fast and facile graphene oxide grafting on hydrophobic polyamide fabric via electrophoretic deposition route. J Mater Sci 53:9504–9520

    CAS  Google Scholar 

  • Zhao B, Kolibaba TJ, Lazar S, Grunlan JC (2020a) Facile two-step phosphazine-based network coating for flame retardant cotton. Cellulose 27:4123–4132

    CAS  Google Scholar 

  • Zhao P, Rao W, Luo H, Wang L, Liu Y, Yu C (2020b) Novel organophosphorus compound with amine groups towards self-extinguishing epoxy resins at low loading. Mater Des 193:108838

    CAS  Google Scholar 

  • Zhou W et al (2019) Ampholytic chitosan/alginate composite nanofibrous membranes with super anti-crude oil-fouling behavior and multifunctional oil/water separation properties. ACS Sustain Chem Eng 7:15463–15470

    CAS  Google Scholar 

  • Zhu ZM, Wang LX, Lin XB, Dong LP (2019) Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polym Degrad Stabil 169:108981

    CAS  Google Scholar 

  • Zhu W, Yang M, Huang H, Dai Z, Cheng B, Hao S (2020) A phytic acid-based chelating coordination embedding structure of phosphorus–boron–nitride synergistic flame retardant to enhance durability and flame retardancy of cotton. Cellulose 27:4817–4829

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support provided by the National Natural Science Foundation of China (Grant Nos. 51673153 and 51973098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Jun Xu or Yun Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, FQ., Wang, B., Xu, YJ. et al. Convenient blending of alginate fibers with polyamide fibers for flame-retardant non-woven fabrics. Cellulose 27, 8341–8349 (2020). https://doi.org/10.1007/s10570-020-03331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03331-2

Keywords

Navigation