Skip to main content
Log in

A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article proposes a solution to the problem of directing multiple second-order agents sphere landing, orbit tracking and formation moving around a family of given concentric spheres in unknown spatiotemporal flowfields. The flowfields put stress on each agent’s velocity and acceleration at once, and the specification of each one is composed of three known base vectors and unknown responding coefficients. First, our pervious two-dimensional geometric extension design is extended to deal with the extension of surface in three-dimensional space. Then, two new adaptive estimators and the cooperative control law are constructed to accomplish the robust spherical formation tracking motion by using the tools of adaptive backstepping, geometric extension and consensus. The asymptotic stability of system is proved when the bidirectional communication topology is connected. The effectiveness of the analytical result is verified by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beard, R.W., Mclain, T.W., Nelson, D.B., Kingston, D., Johanson, D.: Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs. Proc. IEEE 94(7), 1306–1324 (2006)

    Article  Google Scholar 

  2. Gu, Y., Hanson, C.E.: Cooperative gust sensing and suppression for aircraft formation flight I, http://nari.arc.nasa.gov/sites/default/files/NapolitanoWVU_NASA_LEARN_Phase_1_Final_Report_February_2014

  3. Gu, Y.: Cooperative gust sensing and suppression for aircraft formation flight II, http://nari.arc.nasa.gov/sites/default/files/Yu_Gu

  4. MBARI, Autonomous ocean sampling network, http://www.mbari.org/aosn/NontereyBay2003/

  5. Princeton University, Adaptive Sampling and Prediction, http://www.princeton.edu/dcsl/asap/

  6. Leonard, N.E., Paley, D.A., Lekien, F., Sepulchre, R.D., Frantantoni, M., Davis, R.E.: Collective motion, sensor networks, and ocean sampling. Proc. IEEE 95(1), 48–74 (2007)

    Article  Google Scholar 

  7. NASA, Lunar Precursor Robotic Program, http://www.nasa.gov/exploration/acd/lunar.html

  8. NASA, Robotic Mars Exploration, http://www.nasa.gov/mission pages/mars/main/index.html

  9. Peng, Z., Wang, D., Xu, X.: Robust adaptive formation control of underactuated autonomous surface vehicles with uncertain dynamics. IET Control Theory Appl. 5(12), 1378–1387 (2011)

    Article  MathSciNet  Google Scholar 

  10. Zhao, Y., Duan, Z.: Finite-time containment control without velocity and acceleration measurements. Nonlinear Dyn. 82(1–2), 259–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao, Y., Duan, Z., Wen, G., Chen, G.: Distibuted finite-time tracking of multiple non-identical second-order nonlnear systems with settling time estmation. Automatic 64(2), 86–93 (2016)

    Article  MATH  Google Scholar 

  12. Ghommam, J., Mnif, F.: Coordinated path-following control for a group of underactuated surface vessels. IEEE Trans. Ind. Electron. 56(10), 3951–3963 (2009)

    Article  Google Scholar 

  13. Liu, Y., Geng, Z.: Finite-time formation control for linear multi-agent systems: a motion planning approach. Syst. Control Lett. 85(11), 54–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghabcheloo, R., Pascoal, A., Silvestre, C., Kaminer, I.: Coordinated path following control of multiple wheeled robots with directed communication links. In: IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, pp. 7084–7089 (2005)

  15. Ghabcheloo, R., Pascoal, A., Silvestre, C., Kaminer, I.: Nonlinear coordinated path following control of multiple wheeled robots with bidirectional communication constraints. Int. J. Adapt. Control Signal Process. 21(2–3), 133–137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, F., Fratantoni, D.M., Paley, D.A., Lund, J., Leonard, N.E.: Control of coordinated patterns for ocean sampling. Int. J. Control 80(7), 1186–1199 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, F., Leonard, N.E.: Coordinated patterns of unit speed particles on a closed curve. Syst. Contr. Lett. 56(6), 397–407 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Y.-Y., Tian, Y.-P.: A curve extension design for coordinated path following control of unicycles along given convex loops. Int. J. Control 84(10), 1729–1745 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Y.-Y., Tian, Y.-P.: Formation tracking and attitude synchronization control of underactuated ships along closed orbits. Int. J. Robust Nonlinear Control 25(16), 2023–2044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paley, D.A., Petersion, C.: Stabilization of collective motion in a time-invariant flow field. AIAA J. Guid Control Dyn. 32(3), 771–779 (2009)

    Article  Google Scholar 

  21. Mellish, R., Napora, S., Paley, D.A.: Backstepping control design for motion coordination of self-propelled vehicles in a flowfield. Int. J. Robust Nonlinear Control 21(12), 1452–1466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, Y.-Y., Tian, Y.-P.: Coordinated path following control of multi-unicycle formation motion around closed curves in a time-invariant flow. Nonlinear Dyn. 81(1), 1005–1016 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Y.-Y., Zhang, Y., Liu, C.-L., Wei, P.: Coordinated orbit-tracking control of second-order nonlinear agents with directed communication topologies. Int. J. Syst. Sci. 47(16), 3929–3939 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lynch, K.M., Schwartz, I.B., Yang, P., Freeman, R.A.: Decentralized environmental modeling by mobile sensor networks. IEEE Trans. Robot. 24(3), 710–724 (2008)

    Article  Google Scholar 

  25. Summers, T.H., Akella, M.R., Mears, M.J.: Coordinated standoff tracking of moving targets: control laws and information architectures. J. Guid. Control Dyn. 32(1), 56–69 (2009)

  26. Peterson, C., Paley, D.A.: Multi-vehicle coordination in an estimated time-varying flowfield. Guid. Control Dyn. 34(1), 177–191 (2011)

  27. Peterson, C.K., Paley, D.A.: Distributed estimation for motion coordination in an unknown spatially varying flowfield. J. Guid. Control Dyn. 36(3), 894–898 (2013)

    Article  Google Scholar 

  28. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  29. Wu, W.C., Zhang, F.M.: Cooperative exploration of level surfaces of three dimensional scalar fields. Automaica 47(1), 2044–2051 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, J.D.: Synchronization of Kuramoto model in a high-dimensional linear space. Phys. Lett. A 377(41), 2939–2943 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mei, J., Ren, W., Ma, G.F.: Distributed coordinated tracking with a dynamic leader for multiple euler-lagrange systems. IEEE Trans. Autom. Control 56(6), 1415–1421 (2011)

    Article  MathSciNet  Google Scholar 

  32. Liu, Y., Zhao, Y., Chen, G.: Finite-time formation tracking control for multiple vehicles: a motion planning approach. Int. J. Robust Nonlinear Control 26(14), 3130–3149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wen, G.G., Yu, Y.G., Peng, Z.X., Rahmani, A.: Distributed dinite-time consensus tracking for nonlinear multi-agent systems with a time-varying reference state. Int. J. Syst. Sci. 47(8), 1–12 (2014)

    Google Scholar 

  34. Kapila, V., Sparks, A.G., Buffington, J.M., Yan, Q.G.: Spacecraft formation flying: dynamics and control. In: Proceedings of the American Control Conference, San Diego, CA, pp. 4137–4141 (1999)

  35. Dennis, C.P.: Linearized Equations for J2 Perturbed Relative to an Elliptical Orbit (Docotor Thesis). San Jose State University, San Jose, CA (2005)

    Google Scholar 

  36. Clohessy, W.H., Wiltshire, R.S.: Terminal guidance system for satellite rendezvous. J. Astronaut. Sci. 27(9), 653–678 (1960)

    MATH  Google Scholar 

  37. Zhao, Y., Liu, Y., Duan, Z., Wen, G.: Distibuted average computation for multiple time-varying signals with output measurements. Int. J. Robust Nonlinear Control 26(13), 2899–2915 (2016)

    Article  MATH  Google Scholar 

  38. Carmo, M.P.: Differential Geometry of Surfaces. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China Under Grants 61673106, 61473081, 61473138, 61503329, Natural Science Foundation of Jiangsu Province Under Grant BK20141341 and in part by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YY., Wang, ZZ., Zhang, Y. et al. A geometric extension design for spherical formation tracking control of second-order agents in unknown spatiotemporal flowfields. Nonlinear Dyn 88, 1173–1186 (2017). https://doi.org/10.1007/s11071-016-3303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3303-2

Keywords

Navigation