Skip to main content

Advertisement

Log in

Discovery of a pyrazole derivative promoting angiogenesis through modulating reactive oxygen species and interferon-inducible protein 10 levels

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human umbilical cord vascular endothelial cells (HUVECs) cultured without serum and fibroblast growth factor-2 is an in vitro model of ischemic conditions. Our previous study showed that ethyl 3-(o-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxylate (MPD) could inhibit apoptosis of HUVECs in this model. In this study, we investigated the effect of MPD on angiogenesis and the possible mechanisms. Capillary-like tube formation assay on Matrigel and cell migration assay were performed to investigate the effect of MPD on angiogenesis. The reactive oxygen species (ROS) and interferon-inducible protein 10 (IP-10) levels were respectively evaluated by intracellular ROS assay and western blot analysis. MPD at 5 and 10 μM promoted vascular structure formation and HUVEC migration in an in vitro ischemic model. MPD promoted angiogenesis through elevating ROS levels and depressing IP-10 level. ROS seemed to be necessary for angiogenesis, and a high level of IP-10 inhibited angiogenesis in ischemic state. ROS provide clues for seeking new key factors involved in angiogenesis. IP-10 may become a new target for future therapeutic intervention. MPD is a good tool for investigating the mechanism of angiogenesis, and MPD might be useful in the development of new drugs in therapy of ischemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PAOD:

Peripheral arterial occlusive disease

VECs:

Vascular endothelial cells

MPD:

Ethyl 3-(o-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxylate

FGF-2:

Fibroblast growth factor-2

ROS:

Reactive oxygen species

IP-10:

Interferon-inducible protein 10

HUVECs:

Human umbilical vein endothelial cells

FBS:

Fetal bovine serum

DMSO:

Dimethyl sulfoxide

NIH:

National Institutes of Health

DCHF:

2’,7’-Dichlorodihydrofluorescein

DCF:

2’,7’-Dichlorofluorescein

HRP:

Horseradish peroxidase

VEGF:

Vascular endothelial growth factor

References

  1. Fu S, Zhao H, Shi J et al (2008) Peripheral arterial occlusive disease: global gene expression analyses suggest a major role for immune and inflammatory responses. BMC Genomics 9:369. doi:10.1186/1471-2164-9-369

    Article  PubMed  Google Scholar 

  2. Lumsden AB, Rice TW, Chen C et al (2007) Peripheral arterial occlusive disease: magnetic resonance imaging and the role of aggressive medical management. World J Surg 31:695–704. doi:10.1007/s00268-006-0732-y

    Article  PubMed  Google Scholar 

  3. Nunes JL, Silvany-Neto A, Pitta GB et al (2008) Prevalence of peripheral arterial occlusive disease in patients referred to a tertiary care hospital in Salvador, Bahia, Brazil, for coronary angiography. Braz J Med Biol Res 41:202–208. doi:10.1590/S0100-879X2008000300005

    CAS  PubMed  Google Scholar 

  4. Kallio M, Forsblom C, Groop PH, Groop L, Lepantalo M (2003) Development of new peripheral arterial occlusive disease in patients with type 2 diabetes during a mean follow-up of 11 years. Diabetes Care 26:1241–1245. doi:10.2337/diacare.26.4.1241

    Article  PubMed  Google Scholar 

  5. Wang J, Li XY, He Y, Ni B (2004) A cross-sectional study of peripheral arterial occlusive disease in Wanshoulu area, Beijing. Zhonghua Liu Xing Bing Xue Za Zhi 25:221–224 (in Chinese)

    Google Scholar 

  6. Kalka C, Baumgartner I (2008) Gene and stem cell therapy in peripheral arterial occlusive disease. Vasc Med 13:157–172. doi:10.1177/1358863x08088616

    Article  CAS  PubMed  Google Scholar 

  7. Hou X, Wu X, Ma J, Lv X, Jin X (2010) Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep 37:1467–1475. doi:10.1007/s11033-009-9541-3

    Article  CAS  PubMed  Google Scholar 

  8. Chung N, Jee BK, Chae SW, Jeon YW, Lee KH, Rha HK (2009) HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 36:227–235. doi:10.1007/s11033-007-9171-6

    Article  CAS  PubMed  Google Scholar 

  9. Tang J, Wang J, Song H et al (2010) Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Mol Biol Rep 37:1957–1969. doi:10.1007/s11033-009-9642-z

    Article  CAS  PubMed  Google Scholar 

  10. Hanyu A, Kojima K, Hatake K et al (2009) Functional in vivo optical imaging of tumor angiogenesis, growth, and metastasis prevented by administration of anti-human VEGF antibody in xenograft model of human fibrosarcoma HT1080 cells. Cancer Sci 100:2085–2092. doi:10.1111/j.1349-7006.2009.01305.x

    Article  CAS  PubMed  Google Scholar 

  11. Onen IH, Konac E, Eroglu M, Guneri C, Biri H, Ekmekci A (2008) No association between polymorphism in the vascular endothelial growth factor gene at position −460 and sporadic prostate cancer in the Turkish population. Mol Biol Rep 35:17–22. doi:10.1007/s11033-006-9046-2

    Article  CAS  PubMed  Google Scholar 

  12. Ciura J, Jagodzinski PP (2010) Butyrate increases the formation of anti-angiogenic vascular endothelial growth factor variants in human lung microvascular endothelial cells. Mol Biol Rep. doi:10.1007/s11033-010-0026-1

  13. Zhang C, Zhang X, Liu C et al (2010) Expression of endostatin mediated by a novel non-viral delivery system inhibits human umbilical vein endothelial cells in vitro. Mol Biol Rep 37:1755–1762. doi:10.1007/s11033-009-9600-9

    Article  CAS  PubMed  Google Scholar 

  14. Contois L, Akalu A, Brooks PC (2009) Integrins as “functional hubs” in the regulation of pathological angiogenesis. Semin Cancer Biol 19:318–328. doi:10.1016/j.semcancer.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Yeh JR, Crews CM (2003) Chemical genetics: adding to the developmental biology toolbox. Dev Cell 5:11–19. doi:10.1016/S1534-5807(03)00200-4

    Article  CAS  PubMed  Google Scholar 

  16. Walsh TA (2007) The emerging field of chemical genetics: potential applications for pesticide discovery. Pest Manag Sci 63:1165–1171. doi:10.1002/ps.1452

    Article  CAS  PubMed  Google Scholar 

  17. Tolliday N, Clemons PA, Ferraiolo P et al (2006) Small molecules, big players: the National Cancer Institute’s initiative for chemical genetics. Cancer Res 66:8935–8942

    Article  CAS  PubMed  Google Scholar 

  18. Netherton SJ, Maurice DH (2005) Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Mol Pharmacol 67:263–272. doi:10.1124/mol.104.004853

    Article  CAS  PubMed  Google Scholar 

  19. Zhao BX, Zhang L, Zhu XS et al (2008) Synthesis and discovery of a novel pyrazole derivative as an inhibitor of apoptosis through modulating integrin beta4, ROS, and p53 levels in vascular endothelial cells. Bioorg Med Chem 16:5171–5180. doi:10.1016/j.bmc.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  20. Eligini S, Barbieri SS, Cavalca V et al (2005) Diversity and similarity in signaling events leading to rapid Cox-2 induction by tumor necrosis factor-alpha and phorbol ester in human endothelial cells. Cardiovasc Res 65:683–693. doi:10.1016/j.cardiores.2004.10.024

    Article  CAS  PubMed  Google Scholar 

  21. Dulak J, Loboda A, Zagorska A, Jozkowicz A (2004) Complex role of heme oxygenase-1 in angiogenesis. Antioxid Redox Signal 6:858–866. doi:10.1089/ars.2004.6.858

    CAS  PubMed  Google Scholar 

  22. Lu XL, Jiang XB, Liu RE, Zhang SM (2008) The enhanced anti-angiogenic and antitumor effects of combining flk1-based DNA vaccine and IP-10. Vaccine 26:5352–5357. doi:10.1016/j.vaccine.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  23. Tsuchihashi S, Zhai Y, Fondevila C, Busuttil RW, Kupiec-Weglinski JW (2005) HO-1 upregulation suppresses type 1 IFN pathway in hepatic ischemia/reperfusion injury. Transplant Proc 37:1677–1678. doi:10.1016/j.transproceed.2005.03.080

    Article  CAS  PubMed  Google Scholar 

  24. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756. doi:10.1172/JCI107470

    Article  CAS  PubMed  Google Scholar 

  25. Kureishi Y, Luo Z, Shiojima I et al (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010. doi:10.1038/79510

    Article  CAS  PubMed  Google Scholar 

  26. Burk RR (1973) A factor from a transformed cell line that affects cell migration. Proc Natl Acad Sci USA 70:369–372

    Article  CAS  PubMed  Google Scholar 

  27. Vasvari GP, Dyckhoff G, Kashfi F et al (2007) Combination of thalidomide and cisplatin in an head and neck squamous cell carcinomas model results in an enhanced antiangiogenic activity in vitro and in vivo. Int J Cancer 121:1697–1704

    Article  CAS  PubMed  Google Scholar 

  28. Su L, Zhao B, Lv X et al (2007) Safrole oxide induces neuronal apoptosis through inhibition of integrin beta4/SOD activity and elevation of ROS/NADPH oxidase activity. Life Sci 80:999–1006. doi:10.1016/j.lfs.2006.11.041

    Article  CAS  PubMed  Google Scholar 

  29. Suematsu N, Tsutsui H, Wen J et al (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423. doi:10.1161/01.CIR.0000055318.09997.1F

    Article  CAS  PubMed  Google Scholar 

  30. Huang B, Meng N, Zhao B et al (2009) Protective effects of a synthesized butyrolactone derivative against chloroquine-induced autophagic vesicle accumulation and the disturbance of mitochondrial membrane potential and Na(+), K(+)-ATPase activity in vascular endothelial cells. Chem Res Toxicol 22:471–475. doi:10.1021/tx8002824

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Zhu X, Zhao B et al (2008) A novel isochroman derivative inhibited apoptosis in vascular endothelial cells through depressing the levels of integrin beta4, p53 and ROS. Vasc Pharmacol 48:63–69. doi:10.1016/j.vph.2007.11.007

    Article  Google Scholar 

  32. Wang N, Sun C, Huo S et al (2008) Cooperation of phosphatidylcholine-specific phospholipase C and basic fibroblast growth factor in the neural differentiation of mesenchymal stem cells in vitro. Int J Biochem Cell Biol 40:294–306. doi:10.1016/j.biocel.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  33. Huang SS, Zheng RL (2006) Rosmarinic acid inhibits angiogenesis and its mechanism of action in vitro. Cancer Lett 239:271–280. doi:10.1016/j.canlet.2005.08.025

    Article  CAS  PubMed  Google Scholar 

  34. Ruef J, Hu ZY, Yin LY et al (1997) Induction of vascular endothelial growth factor in balloon-injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis. Circ Res 81:24–33

    CAS  PubMed  Google Scholar 

  35. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266:37–52. doi:10.1016/j.canlet.2008.02.044

    Article  CAS  PubMed  Google Scholar 

  36. Luster AD, Unkeless JC, Ravetch JV (1985) Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 315:672–676

    Article  CAS  PubMed  Google Scholar 

  37. Mei K, Wang L, Tian L, Yu J, Zhang Z, Wei Y (2008) Antitumor efficacy of combination of interferon-gamma-inducible protein 10 gene with gemcitabine, a study in murine model. J Exp Clin Cancer Res 27:63. doi:10.1186/1756-9966-27-63

    Article  PubMed  Google Scholar 

  38. Heinzman JM, Brower SL, Bush JE (2008) Comparison of angiogenesis-related factor expression in primary tumor cultures under normal and hypoxic growth conditions. Cancer Cell Int 8:11. doi:10.1186/1475-2867-8-11

    Article  PubMed  Google Scholar 

  39. Gotsch F, Romero R, Friel L et al (2007) CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med 20:777–792. doi:10.1080/14767050701483298

    Article  CAS  PubMed  Google Scholar 

  40. Jain V, Armah HB, Tongren JE et al (2008) Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 7:83. doi:10.1186/1475-2875-7-83

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National 973 Research Project (No. 2006CB503803) and National Natural Science Foundation of China (No. 90813022) and the science and technology developmental project of Shandong Province (2008GG10002034 and 2007GG20002004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Jin, Baoxiang Zhao or Junying Miao.

Additional information

Maohua Wang and Jingyong Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Zhang, J., Wu, X. et al. Discovery of a pyrazole derivative promoting angiogenesis through modulating reactive oxygen species and interferon-inducible protein 10 levels. Mol Biol Rep 38, 1491–1497 (2011). https://doi.org/10.1007/s11033-010-0256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0256-2

Keywords

Navigation