Skip to main content

Advertisement

Log in

Construction and immunogenicity of a new Fc-based subunit vaccine candidate against Mycobacterium tuberculosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As an ancient disease, tuberculosis (TB) is a major global health threat. Therefore, there is an urgent need for an effective and safe anti-TB vaccine. In the current study, a delivery system of Fc domain of mouse IgG2a and early secreted antigenic target protein 6 (ESAT-6) was evaluated for the selective uptake of antigens by antigen-presenting cells (APCs). Thus, it was based on the immunogenicity of a fusion protein. The study was initiated by the transfer of recombinant expression vectors of pPICZαA-ESAT-6:Fcγ2a and pPICZαA-ESAT-6: His into Pichia pastoris (P. pastoris). Recombinant proteins were assessed for immunogenicity following the immunoblotting analysis. High levels of IFN-γ and IL-12 were produced to induce Th1-type cellular responses through vaccination with both recombinant proteins [ESAT-6:Fcγ2a (EF) and ESAT-6:His (EH)]. The Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a low increment in IL-4 compared to PBS, BCG, and EH groups. Although in all the immunized groups, the ratio of IFN-γ/IL-4 was in favor of Th1 responses, the highest Th1/Th2 balance was observed in EF immunized group. Fc fragment of mouse IgG2a may induce a selective uptake of APCs towards the cross-presentation and formation of Th1 responses in favor of an appropriate protective anti-tuberculosis reaction. Thus, further research on Fc-fusion proteins is required to develop Fc-based TB vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. World Health Organization (2015) Global tuberculosis report 2015 (WHO). www.who.int/about/licensing/copyright_form/en/index.html

  2. Nuttall JJ, Davies MA, Hussey GD, Eley BS (2008) Bacillus Calmette-Guerin (BCG) vaccine-induced complications in children treated with highly active antiretroviral therapy. Int J Infect Dis 12:e99–e105

    Article  PubMed  Google Scholar 

  3. Logan KE, Chambers MA, Hewinson RG, Hogarth PJ (2005) Frequency of IFN-gamma producing cells correlates with adjuvant enhancement of bacille Calmette-Guerin induced protection against Mycobacterium bovis. Vaccine 23:5526–5532

    Article  CAS  PubMed  Google Scholar 

  4. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S et al (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523

    Article  CAS  PubMed  Google Scholar 

  5. Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R (2004) ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12:500–508

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Q, Zhang J, Chen X, Xia M, Lu Y, Qiu W et al (2013) A novel recombinant DNA vaccine encoding Mycobacterium tuberculosis ESAT-6 and FL protects against Mycobacterium tuberculosis challenge in mice. J Biomed Res 27:406–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P (2000) ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun 68:791–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weinrich Olsen A, van Pinxteren LA, Meng Okkels L, Birk Rasmussen P, Andersen P (2001) Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and esat-6. Infect Immun 69:2773–2778

    Article  CAS  PubMed  Google Scholar 

  9. Zaghouani H, Steinman R, Nonacs R, Shah H, Gerhard W, Bona C (1993) Presentation of a viral T cell epitope expressed in the CDR3 region of a self immunoglobulin molecule. Science 259:224–227

    Article  CAS  PubMed  Google Scholar 

  10. Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317:1261–1269

    Article  CAS  PubMed  Google Scholar 

  11. Adamova E, Walsh MC, Gosselin DR, Hale K, Preissler MT, Graziano RF et al (2005) Enhanced antigen-specific antibody and cytokine responses when targeting antigen to human Fc-gamma receptor type I using an anti-human Fc-gamma receptor type I-streptavidin fusion protein in an adjuvant-free system. Immunol Invest 34:417–429

    Article  CAS  PubMed  Google Scholar 

  12. Keler T, Guyre PM, Vitale LA, Sundarapandiyan K, van De Winkel JG, Deo YM et al (2000) Targeting weak antigens to CD64 elicits potent humoral responses in human CD64 transgenic mice. J Immunol 165:6738–6742

    Article  CAS  PubMed  Google Scholar 

  13. Rawool DB, Bitsaktsis C, Li Y, Gosselin DR, Lin Y, Kurkure NV et al (2008) Utilization of Fc receptors as a mucosal vaccine strategy against an intracellular bacterium, Francisella tularensis. J Immunol 180:5548–5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walsh MC, Banas JA, Mudzinski SP, Preissler MT, Graziano RF, Gosselin EJ (2003) A two-component modular approach for enhancing T-cell activation utilizing a unique anti-FcgammaRI-streptavidin construct and microspheres coated with biotinylated-antigen. Biomol Eng 20:21–33

    Article  CAS  PubMed  Google Scholar 

  15. Soleimanpour S, Farsiani F, Mosavat A, Ghazvini K, Eydgahi MR, Sankian M et al (2015) APC targeting enhances immunigenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Appl Microbiol Biotechnol 99:10467–10480

    Article  CAS  PubMed  Google Scholar 

  16. den Haan JM, Lehar SM, Bevan MJ (2000) CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696

    Article  Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  18. Davidsen J, Rosenkrands I, Christensen D, Vangala A, Kirby D, Perrie Y et al (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6′-dibehenate)-a novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718:22–31

    Article  CAS  PubMed  Google Scholar 

  19. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254

    Article  CAS  PubMed  Google Scholar 

  20. Lockhart E, Green AM, Flynn JL (2006) IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669

    Article  CAS  PubMed  Google Scholar 

  21. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173

    Article  CAS  PubMed  Google Scholar 

  23. Ansel KM, Lee DU, Rao A (2003) An epigenetic view of helper T cell differentiation. Nat Immunol 4:616–623

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Barnes PF, Huang F, Alvarez IB, Neuenschwander PF, Sherman DR et al (2012) Early secreted antigenic target of 6-kDa protein of Mycobacterium tuberculosis primes dendritic cells to stimulate Th17 and inhibit Th1 immune responses. J Immunol 189:3092–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang X, Barnes PF, Dobos-Elder KM, Townsend JC, Chung YT, Shams H et al (2009) ESAT-6 inhibits production of IFN-gamma by Mycobacterium tuberculosis-responsive human T cells. J Immunol 182:3668–3677

    Article  CAS  PubMed  Google Scholar 

  26. Pathak SK, Basu S, Basu KK, Banerjee A, Pathak S, Bhattacharyya A et al (2007) Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages. Nat Immunol 8:610–618

    Article  CAS  PubMed  Google Scholar 

  27. Langermans JA, Doherty TM, Vervenne RA, van der Laan T, Lyashchenko K, Greenwald R et al (2005) Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 23:2740–2750

    Article  CAS  PubMed  Google Scholar 

  28. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A et al (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539

    Article  CAS  PubMed  Google Scholar 

  29. Olsen AW, Williams A, Okkels LM, Hatch G, Andersen P (2004) Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect Immun 72:6148–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sereinig S, Stukova M, Zabolotnyh N, Ferko B, Kittel C, Romanova J et al (2006) Influenza virus NS vectors expressing the mycobacterium tuberculosis ESAT-6 protein induce CD4 + Th1 immune response and protect animals against tuberculosis challenge. Clin Vaccine Immunol 13:898–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Agger EM, Rosenkrands I, Hansen J, Brahimi K, Vandahl BS, Aagaard C et al (2008) Cationic liposomes formulated with synthetic mycobacterial cordfactor (CAF01): a versatile adjuvant for vaccines with different immunological requirements. PLoS One 3:e3116

    Article  PubMed  PubMed Central  Google Scholar 

  32. Korepanova A, Gao FP, Hua Y, Qin H, Nakamoto RK, Cross TA (2005) Cloning and expression of multiple integral membrane proteins from Mycobacterium tuberculosis in Escherichia coli. Protein Sci 14:148–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andersson GE, Sharp PM (1996) Codon usage in the Mycobacterium tuberculosis complex. Microbiology 142:915–925

    Article  CAS  PubMed  Google Scholar 

  34. Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N et al (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124

    Article  CAS  PubMed  Google Scholar 

  35. Ordway DJ, Costa L, Martins M, Silveira H, Amaral L, Arroz MJ et al (2004) Increased Interleukin-4 production by CD8 and gammadelta T cells in health-care workers is associated with the subsequent development of active tuberculosis. J Infect Dis 190:756–766

    Article  CAS  PubMed  Google Scholar 

  36. Demissie A, Abebe M, Aseffa A, Rook G, Fletcher H, Zumla A et al (2004) Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4delta2. J Immunol 172:6938–6943

    Article  CAS  PubMed  Google Scholar 

  37. Harris J, De Haro SA, Master SS, Keane J, Roberts EA, Delgado M et al (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517

    Article  CAS  PubMed  Google Scholar 

  38. Reljic R, Paul MJ, Arias MA (2009) Cytokine therapy of tuberculosis at the crossroads. Expert Rev Respir Med 3:53–66

    Article  CAS  PubMed  Google Scholar 

  39. Goonetilleke NP, McShane H, Hannan CM, Anderson RJ, Brookes RH, Hill AV (2003) Enhanced immunogenicity and protective efficacy against Mycobacterium tuberculosis of bacille Calmette-Guerin vaccine using mucosal administration and boosting with a recombinant modified vaccinia virus Ankara. J Immunol 171:1602–1609

    Article  CAS  PubMed  Google Scholar 

  40. Heyman B (2000) Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu Rev Immunol 18:709–737

    Article  CAS  PubMed  Google Scholar 

  41. Probst HC, Lagnel J, Kollias G, van den Broek M (2003) Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8 + T cell tolerance. Immunity 18:713–720

    Article  CAS  PubMed  Google Scholar 

  42. Goldenberg MM (1999) Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin Ther 21:75–87

    Article  CAS  PubMed  Google Scholar 

  43. Farsiani H, Mosavat A, Soleimanpour S, Sadeghian H, Akbar Eydgahi MR, Ghazvini K, Sankian M et al (2016) Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex. Mole Biosyst. doi:10.1039/c6mb00174b

    Google Scholar 

  44. Soleimanpour S, Hassannia T, Motiee M, Amini AA, Rezaee SAR (2016) Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties. Crit Rev Biotechnol 6:1–22

    Article  Google Scholar 

Download references

Acknowledgments

This study has been supported by vice chancellor for research of Mashhad University of Medical Sciences (Grant no. 910072). This study was a part of a PhD dissertation by Abdollah Kebriaei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiarash Ghazvini.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebriaei, A., Derakhshan, M., Meshkat, Z. et al. Construction and immunogenicity of a new Fc-based subunit vaccine candidate against Mycobacterium tuberculosis . Mol Biol Rep 43, 911–922 (2016). https://doi.org/10.1007/s11033-016-4024-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4024-9

Keywords

Navigation