Skip to main content

Advertisement

Log in

Regulation of soluble Flt-1 (VEGFR-1) production by hnRNP D and protein arginine methylation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Soluble fms-like tyrosine kinase-1 (sFlt-1) functions as a potent inhibitor of angiogenesis by trapping vascular endothelial growth factor (VEGF). However, the precise regulatory mechanism of sFlt-1 production is unknown. Here, we report that vascular sFlt-1 production is regulated by heterogeneous nuclear ribonucleoprotein D (hnRNP D) and arginine methylation. We showed that hnRNP D bound to Flt-1 pre-mRNA and that hnRNP D overexpression decreased sFlt-1 mRNA in human microvascular endothelial cells (HMVECs). In contrast, the reduction of hnRNP D levels induced an increase in sFlt-1 production. Overexpression of an hnRNP D mutant in which the arginine residue of the known arginine methylation motif (arginine-glycine-glycine; RGG) was replaced with alanine did not reduce the level of soluble-form RNA produced from the Flt-1 minigene. Moreover, we demonstrated that overexpression of arginine methyltransferase decreased the soluble-form RNA level, whereas overexpression of arginine demethylase and addition of methyltransferase inhibitors increased sFlt-1 mRNA levels. These findings indicate that hnRNP D and arginine methylation play important roles in the regulation of Flt-1 mRNA alternative polyadenylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52:237–268

    CAS  PubMed  Google Scholar 

  2. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin H (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–26995

    CAS  PubMed  Google Scholar 

  3. Wu FTH, Stefanini MO, Gabhann FM, Kontos CD, Annex BH, Popel AS (2010) A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med 14:528–552. doi:10.1111/j.1582-4934.2009.00941.x

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJC, Richter E, Sakurai E, Newcomb MT, Kleinman ME, Caldwell RB, Lin Q, Ogura Y, Orecchia A, Samuelson DA, Agnew DW, St Leger J, Green WR, Mahasreshti PJ, Curiel DT, Kwan D, Marsh H, Ikeda S, Leiper LJ, Collinson JM, Bogdanovich S, Khurana TS, Shibuya M, Baldwin ME, Ferrara N, Gerber HP, De Falco S, Witta J, Baffi JZ, Raisler BJ, Ambati J (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443:993–997. doi:10.1038/nature05249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Luo L, Uehara H, Zhang X, Das SK, Olsen T, Holt D, Simonis JM, Jackman K, Singh N, Miya TR, Huang W, Ahmed F, Bastos-Carvalho A, Le YZ, Mamalis C, Chiodo VA, Hauswirth WW, Baffi J, Lacal PM, Orecchia A, Ferrara N, Gao G, Young-Hee K, Fu Y, Owen L, Albuquerque R, Baehr W, Thomas K, Li DY, Chalam KV, Shibuya M, Grisanti S, Wilson DJ, Ambati J, Ambati BK (2013) Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. eLife 2:e00324. doi:10.7554/eLife.00324.034

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chappell JC, Taylor SM, Ferrara N, Bautch VL (2009) Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev Cell 17:377–386. doi:10.1016/j.devcel.2009.07.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Jin J, Sison K, Li C, Tian R, Wnuk M, Sung HK, Jeansson M, Zhang C, Tucholska M, Jones N, Kerjaschki D, Shibuya M, Fantus IG, Nagy A, Gerber HP, Ferrara N, Pawson T, Quaggin SE (2012) Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151:384–399. doi:10.1016/j.cell.2012.08.037

    Article  CAS  PubMed  Google Scholar 

  8. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658. doi:10.1172/JCI200317189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT (1998) Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 95:8795–8800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90:10705–10709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ikeda T, Sun L, Tsuruoka N, Ishigaki Y, Yoshitomi Y, Yoshitake Y, Yonekura H (2011) Hypoxia down-regulates sFlt-1 (sVEGFR-1) expression in human microvascular endothelial cells by a mechanism involving mRNA alternative processing. Biochem J 436:399–407. doi:10.1007/s11010-012-1284-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Giammartino DCD, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866. doi:10.1016/j.molcel.2011.08.017

    Article  PubMed Central  PubMed  Google Scholar 

  13. Vorlová S, Rocco G, Lefave CV, Jodelka FM, Hess K, Hastings ML, Henke E, Cartegni L (2011) Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell 43:927–939. doi:10.1016/j.molcel.2011.08.009

    Article  PubMed Central  PubMed  Google Scholar 

  14. Wagner BJ, DeMaria CT, Sun Y, Wilson GM, Brewer G (1998) Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 48:195–202. doi:10.1006/geno.1997.5142

    Article  CAS  PubMed  Google Scholar 

  15. Thandapani P, O’Connor TR, Bailey TL, Richard S (2013) Defining the RGG/RG motif. Mol Cell 50:613–623. doi:10.1016/j.molcel.2013.05.021

    Article  CAS  PubMed  Google Scholar 

  16. Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1:119–126. doi:10.1038/nmeth715

    Article  CAS  PubMed  Google Scholar 

  17. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, why. Mol Cell 33:1–13. doi:10.1016/j.molcel.2008.12.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chang B, Chen Y, Zhao Y, Bruick RK (2007) JMJD6 is a histone arginine demethylase. Science 318:444–447. doi:10.1126/science.1145801

    Article  CAS  PubMed  Google Scholar 

  19. Bedford MT, Richard S (2005) Arginine methylation: an emerging regulator of protein function. Mol Cell 18:263–272. doi:10.1016/j.molcel.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  20. Fellows A, Griffin ME, Petrella BL, Zhong L, Parvin-Nejad FP, Fava R, Morganelli P, Robey RB, Nichols RC (2012) AUF1/hnRNP D represses expression of VEGF in macrophages. Mol Biol Cell 23:1414–1422. doi:10.1091/mbc.E11-06-0545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ishikawa F, Matunis MJ, Dreyfuss G, Cech TR (1993) Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol Cell Biol 13:4301–4310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8:113–126. doi:10.1038/nrm2104

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Wagner BJ, Ehrenman K, Schaefer AW, DeMaria CT, Crater D, DeHaven K, Long L, Brewer G (1993) Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell Biol 13:7652–7665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Inoue A, Arao Y, Omori A, Ichinose S, Nishio K, Yamamoto N, Kinoshita Y, Mita S (2003) Identification of S1 proteins B2, C1 and D1 as AUF1 isoforms and their major role as heterogeneous nuclear ribonucleoprotein proteins. Biochem J 372:775–785. doi:10.1042/bj20021719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sarkar B, Lu JY, Schneider RJ (2003) Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family. J Biol Chem 278:20700–20707. doi:10.1074/jbc.M301176200

    Article  CAS  PubMed  Google Scholar 

  26. Wilson GM, Lu J, Sutphen K, Sun Y, Huynh Y, Brewer G (2003) Regulation of A + U-rich element-directed mRNA turnover involving reversible phosphorylation of AUF1. J Biol Chem 278:33029–33038. doi:10.1074/jbc.M305772200

    Article  CAS  PubMed  Google Scholar 

  27. White EJF, Brewer G, Wilson GM (2013) Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim Biophys Acta 1829:680–688. doi:10.1016/j.bbagrm.2012.12.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Young Scientists (B) (JSPS KAKENHI Grant Number 23792017), Strategic Research Foundation Grant-aided Project for Private Universities from The Ministry of Education, Culture, Sports, Science and Technology, Japan (S1201022), Grant for Specially Prompted Research from Kanazawa Medical University (SR2012-02), and Grant for Promoted Research from Kanazawa Medical University (S2013-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Yonekura.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, T., Yoshitomi, Y., Saito, H. et al. Regulation of soluble Flt-1 (VEGFR-1) production by hnRNP D and protein arginine methylation. Mol Cell Biochem 413, 155–164 (2016). https://doi.org/10.1007/s11010-015-2649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2649-y

Keywords

Navigation