Skip to main content
Log in

Granular gas in weightlessness: The limit case of very low densities of non interacting spheres

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

Experiments on non interacting balls in a vibrated box are reported. In a first experiment with an electromagnetic vibrator on earth or in board of Airbus A300 of CNES, the 1-ball dynamics exhibit little transverse motion and an intermittent quasi periodic motion along the direction parallel to the vibration. This behaviour proves a significant reduction of the phase space dimension of this billiard-like system from 11- d to 3- d or 1- d. It is caused by dissipation, which generates non ergodic dynamics. This experiment exemplifies the coupling between translation and rotation degrees of freedom during the collisions with the walls, due to solid friction at contacts. This eliminates ball rotation and freezes transverse velocity fluctuations. This trend is confirmed by 3d simulations with JJ Moreau discrete element code. A two-ball experiment performed under zero-g conditions in the Maxus 5 flight confirms the trend; the quasi-periodicity is found much greater, which is probably due to an improvement of experimental conditions. The two balls are not in perfect synchronisation showing the effect of small random noise; but the particles has never collided. This is then the normal dynamics of a gas of non-interacting dilute spherical grains in a vibrated container.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldhirsch, I., 2003, Ann. Rev. Fluid Mech. 35, 267–293, and refs there in

    Article  MathSciNet  Google Scholar 

  2. Evesque, P., 2002, “Are temperature and other thermodynamics variables efficient concepts for describing granular gases and/or flows”, poudres & grains 13, 20–26, (2002); http://mssmat.ecp.fr/sols/Poudres&Grains/poudres-index.htm

    Google Scholar 

  3. Sinai, Y.G., 1970, Russian Math. Surveys 25: 137 (1970).

    MATH  MathSciNet  Google Scholar 

  4. Fermi, E., Phys. Rev. 15. 1169. (1949)

    Article  Google Scholar 

  5. Brahic, A., Numerical study of a simple dynamical system. Aston. & Astrophys. 12. 98–1010 (1971)

    Google Scholar 

  6. Lichtenberg, A. J., Lieberman, MA. andCohen, R.H.. Fermi acceleration revisited. Physica D 1. 291 (1980)

    Article  MathSciNet  Google Scholar 

  7. Luck J.M. and Mehta A., Phys. Rev. 48, 3988 (1993), and references therein.

  8. Warr S., W. Cooke, Ball R.C. & Huntley J.M., Physica A 231, 551 (1996), and references therein.

  9. Géminard, J.C. &Laroche, C., 2003, Phys. Rev. E 68, 031305 (2003)

    Article  Google Scholar 

  10. Evesque, P., 2001a, “The thermodynamics of a single bead in a vibrated container”, poudres & grains 12, 17–42, http://mssmat.ecp.fr/sols/Poudres&Grains/poudres-index.htm

    Google Scholar 

  11. Evesque, P., 2004, “New corner stones in dissipative granular gases: On some theoretical implication of Liouville’s Equation in the physics of loose granular dissipative gases”, poudres & grains 14, 8–53, http://mssmat.ecp.fr/sols/Poudres&Grains/poudres-index.htm

    Google Scholar 

  12. S. McNamara, E. Falcon, in Lecture Notes in Physics, Granular Gases., T. Pöschel and S. Luding (Eds), Springer-Verlag, (2003).

  13. Falcon, E., Wunenberger, R., Evesque, P., Fauve, S., Garrabos, Y. andBeysens, D., 1999, Phys. Rev. Lett. 83, 440–43 (1999)

    Article  Google Scholar 

  14. Evesque P., 2001b, “Comparison between classical-gas behaviours and granular gas ones in micro-gravity”, poudres & grains 12, 60–82, http://mssmat.ecp.fr/sols/Poudres&Grains/poudres-index.htm, summarized in Evesque P., Beysens D., and Garrabos Y., J. Phys. IV France 11, Pr6-49 (2001).

  15. Jean, P., Bellenger, K., Burban, P., Ponson, L. &Evesque, P., 2002, ‘Phase transition or Maxwell’s demon in granular gas?”, poudres & grains 14, 27–39, http://mssmat.ecp.fr/sols/Poudres&Grains/poudres-index.htm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Evesque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evesque, P., Palencia, F., Lecoutre-Chabot, C. et al. Granular gas in weightlessness: The limit case of very low densities of non interacting spheres. Microgravity sci. Technol. 16, 280–284 (2005). https://doi.org/10.1007/BF02945991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02945991

Keywords

Navigation