Skip to main content
Log in

Sorption of uranium on lead hydroxyapatite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The uranium sorption from diluted aqueous solution onto lead hydroxyapatite was studied by using a batch-mode technique and the fluorimetric determination of uranium mass concentration. Partially crystallised lead hydroxyapatite [Pb10(PO4)6(OH)2] was obtained by direct precipitation and mild heating. This material presents very high specific surface, which is the key factor in the sorption of uranium from diluted solution. This material has a high ability to remove uranium (K d,max from 5,661 to 18,833 ml/g, at 4 and 60 °C, respectively) in the chosen setup conditions (initial concentration of uranium 5 × 10−6 M and pH 5.65).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PbHAp:

Lead hydroxyapatite

ppm:

Part per million

References

  1. Rathore DPS (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77(1):9–20

    Article  CAS  Google Scholar 

  2. Sachs S, Bernhart G (2011) Influence of humic acids on the actinide migration in the environment: suitable humic acid model substances and their application in studies with uranium—a review. J Radioanal Nucl Chem 290(1):17–29

    Article  CAS  Google Scholar 

  3. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) Kinetic and thermodynamic aspects of U(VI) and Th(IV) sorption on a zeolitic volcanic tuff. J Radioanal Nucl Chem 270(3):637–640

    Article  CAS  Google Scholar 

  4. Tykva R, Salahel Din K, Pavel CC, Cecal A, Popa K (2009) Contribution to the external surface of a titanium-rich sand (Abou-Khashaba, Egypt) in the uranium uptake process. J Radioanal Nucl Chem 279(3):811–816

    Article  CAS  Google Scholar 

  5. Pavel CC, Walter M, Popa K (2008) The improuvement of retention capacity of ETS-10 towards uranyl ions by porosity modification and their immobilization into a titanosilicate matrix. J Mater Chem 18(27):3342–3346

    Article  CAS  Google Scholar 

  6. Popa K, Pavel CC (2012) Radioactive wastewaters purification using titanosilicates materials: state of the art and perspectives. Desalination 293:78–86

    Article  CAS  Google Scholar 

  7. Jeanjean J, Rouchaud JC, Tran L, Fedoroff M (1995) Sorption of uranium and other heavy metals on hydroxyapatite. J Radioanal Nucl Chem 201(6):529–539

    Article  CAS  Google Scholar 

  8. Ulusoy U, Akkaya R (2009) Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO2 2+ and Th4+. J Hazard Mater 163(1):98–108

    Article  CAS  Google Scholar 

  9. Krestou A, Xenidis A, Panias D (2004) Mechanism of aqueous uranium(VI) uptake by hydroxyapatite. Miner Eng 17(3):373–381

    Article  CAS  Google Scholar 

  10. Simon FG, Biermann V, Segebade C, Hedrich M (2004) Behaviour of uranium in hydroxyapatite-bearing permeable reactive barriers: investigation using 237U as a radiotracer. Sci Total Environ 236(1–3):249–256

    Article  Google Scholar 

  11. Galambos M, Suchanek P, Rosskopfova O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633

    Article  CAS  Google Scholar 

  12. Chattanathan SA, Clement TP, Kanel SR, Barnett MO, Chatakandi N (2013) Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones. Water Air Soil Pollut 224:1429–1437

    Article  Google Scholar 

  13. Rodriguez-Carvajal J (2001) FULLPROF.2k: rietveld, profile matching and integrated intensity refinement of X-ray and neutron data, V 1.9c. Laboratoire Léon Brillouin, CEA, Saclay

    Google Scholar 

  14. M 01–15-2005 (2009) Water quality. Method for the determination of mass concentration of uranium in the samples of natural, drinking and waste water with the use of liquid analyzer Fluorat-02-2M. Lumex Ltd., Saint Petersburg

    Google Scholar 

  15. Negas T, Roth RS (1968) High temperature dehydroxylation of apatitic phosphates. J Res Nat Bur Stand 72A:783–787

    Article  Google Scholar 

  16. Blakeslee KC, Condrate RA (1977) Vibrational spectra of hydroxylthermally prepared hydroxyapatites. J Am Ceram Soc 54(11):559–563

    Article  Google Scholar 

  17. Kim JY, Hunter BA, Fenton RR, Kennedy BJ (1997) Neutron powder diffraction study of lead hydroxyapatite. Aust J Chem 50(11):1061–1066

    Article  CAS  Google Scholar 

  18. White TJ, ZhiLi D (2003) Structural deviation and crystal chemistry of apatites. Acta Cryst B59:1–16

    CAS  Google Scholar 

  19. Yusan S, Gok C, Erenturk S, Aytas S (2012) Adsorptive removal of thorium(IV) using calcined and flux calcined diatomite from Turkey: evaluation of equilibrium, kinetic and thermodynamic data. Appl Clay Sci 67–68:106–116

    Article  Google Scholar 

  20. Dong HY, Liu ZJ, Li YY, Chen L, Zhang ZC (2012) Effect of pH, ionic strength, foreign ions, fulvic acid and temperature on 109Cd(II) sorption to γ-Al2O3. J Radioanal Nucl Chem 292(2):619–627

    Article  CAS  Google Scholar 

  21. Huang Y, Wang H, Gong S (2012) Sorption behavior of hydroxyapatite for 109Cd(II) as a function of environmental conditions. J Radioanal Nucl Chem 292(2):545–553

    Article  CAS  Google Scholar 

  22. Chen SW, Guo BL, Wang YL, Li Y, Song LJ (2013) Study of sorption of U(VI) onto ordered mesoporous silicas. J Radioanal Nucl Chem 295(2):1435–1442

    Article  CAS  Google Scholar 

  23. Lagergren S (1898) Zur teorie der sogenannten adsorption gelöster stoffe. Kungliga Sveska Vetenskapsakademiens Handlingar 24(4):1–39

    Google Scholar 

  24. Pavel CC, Popa K, Bilba N, Cecal A, Cozma DG, Pui A (2003) Study of sorption of some radiocations on microporous titanosilicate ETS-10. J Radioanal Nucl Chem 258(2):243–248

    Article  CAS  Google Scholar 

  25. Popa K, Pavel CC, Bilba N, Cecal A (2006) Purification of waste waters containing 60Co2+, 115mCd2+ and 203Hg2+ radioactive ions by ETS-4 microporous titanosilicate. J Radioanal Nucl Chem 269(1):155–160

    Google Scholar 

  26. Pavel CC, Walter M, Popa K (2011) Contrasting immobilization behaviour of Cs+ and Sr2+ cations into a titanosilicate matrix. J Mater Chem 21(11):3831–3837

    Article  CAS  Google Scholar 

  27. Borcia C, Popa K, Pavel CC, Dascalu A, Vitelaru C, Apetrachioaei BA (2011) Sorption of thallous ion from acidic aqueous solutions onto as-made and modified ETS-10. J Radioanal Nucl Chem 288(1):25–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Popa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa, K. Sorption of uranium on lead hydroxyapatite. J Radioanal Nucl Chem 298, 1527–1532 (2013). https://doi.org/10.1007/s10967-013-2551-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2551-6

Keywords

Navigation