Skip to main content
Log in

Towards the design of Cyclooxygenase (COX) inhibitors based on 4′,5 di-substituted biphenyl acetic acid molecules: a QSAR study with a new DFT based descriptor - nucleus independent chemical shift

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Cyclooxygenase (COX) is a well-known enzyme, which converts arachidonic acid to prostaglandins H2 (PGH2), which are the effective mediators of inflammation. 4′, 5 di-substituted 3-biphenyl acetic acids (BPA) and several α-methyl derivatives (MBPA) of it are widely used as powerful nonsteroidal anti-inflammatory and analgesic agents. We have chosen these activity data because the relation between the substituents and activity is not obvious and is hard to explain and also to show the superiority of DFT method. From the DFT results, various quantum chemical based descriptors were computed but the QSAR results showed that the descriptors based on frontier electron density and a new DFT based quantum chemical descriptor, nucleus independent chemical shift (NICS) are likely to be responsible for the in vitro inhibiting activity of BPA and MPBA. It has been proposed that NICS accounts for π…π interaction and indeed leads to a better result. To the best of our knowledge, this is the first use of NICS as a descriptor to get a better relationship to facilitate the design of COX inhibitors with potentially higher biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Picot D, Loll PJ, Garavito RM (1994) Nature 367:243–249

    Article  CAS  Google Scholar 

  2. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Nature 384:644–648

    Article  CAS  Google Scholar 

  3. Kalgutkar AS, Crews BC, Rowlinson SW, Garner C, Seibert K, Marnett LJ (1998) Science 280:1268–1270

    Article  CAS  Google Scholar 

  4. Gao H, Katzenellenbogen JA, Garg R, Hansch C (1999) Chem Rev 99:723–744

    Article  CAS  Google Scholar 

  5. Gupta SP (1991) Chem Rev 91:1109–1119

    Article  CAS  Google Scholar 

  6. Gu CG, Jiang X, Ju XH, Yang XL, Yu GF (2007) SAR and QSAR in Environmental Research 18:603–619

    Article  CAS  Google Scholar 

  7. Singh PP, Srivastava HK, Pasha FA (2004) Bioorg Med Chem 12:171

    Article  CAS  Google Scholar 

  8. Michaelidou AS, Hadjipavlou-Litina D (2005) Chem Rev 105:3235–3271

    Article  CAS  Google Scholar 

  9. Karelson M, Lobanov VS, Katritzky AR (1996) Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  10. Parr RG (1983) Annu Rev Phys Chem 34:631–656

    Article  CAS  Google Scholar 

  11. Parr RG (1995) Annu Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  12. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  13. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  Google Scholar 

  14. Yasumitsu T (1981) J Med Chem 24:43–47

    Article  Google Scholar 

  15. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  16. Chen Z, Chaitanya SW, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  17. Jonathan AB, Frank W, Thomas CF (1997) J Chem Phys 107:1173–1184

    Article  Google Scholar 

  18. Zborowski K, Alkorta I, Elguero J (2007) Struct Chem 18:797–805

    Article  CAS  Google Scholar 

  19. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Hirata S, Zhan CG, Apra E, Windus TL, Dixon DA (2003) J Phys Chem A 107:10154–10158

    Article  CAS  Google Scholar 

  23. Sulpizi M, Folkers G, Rothlisberger U, Carloni P, Scapozza L (2002) Quant Struct Act Relat 21:173–181

    Article  CAS  Google Scholar 

  24. Iczkowski RP, Margrave JL (1961) JL J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  25. Parr RG, Yang WR (1989) Density functional theory of atoms and molecules. Oxford Univ Press, Oxford

    Google Scholar 

  26. Sanderson RT (1976) Chemical bonds and bond energy. Academic, New York

    Google Scholar 

  27. Sanderson RT (1961) Polar Covalence. Academic, New York

    Google Scholar 

  28. Parr RG, Yang W (1984) J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  29. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  30. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  31. Chattaraj PK, Sarkar U, Roy DR (2003) Chem Rev 106:2065–2091

    Article  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Millam MA, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi Barone JV, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Sefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, A-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andes JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03 - Revision B.03. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  33. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) J Comput-Aided Mol Des 17:241–253

    Article  CAS  Google Scholar 

  34. Hawkins DM, Basak SC, Mills D (2003) J Chem Inf Comput Sci 43:579–586

    CAS  Google Scholar 

  35. Thomas BF, Compton DR, Martin BR, Semus SF (1991) Mol Pharmacol 40:656–665

    CAS  Google Scholar 

  36. Agarwal A, Pearson PP, Taylor EW, Li HB, Dahlgren T, Herslof M, Yang Y, Lambert G, Nelson DL, Regan JW, Martin AR (1993) J Med Chem 36:4006–4014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge “Jadavpur University mobile computing center” under the University Grant Commission scheme of University with potential of excellence for computation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golam Mostafa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 12.9 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Mostafa, G. Towards the design of Cyclooxygenase (COX) inhibitors based on 4′,5 di-substituted biphenyl acetic acid molecules: a QSAR study with a new DFT based descriptor - nucleus independent chemical shift. J Mol Model 15, 1221–1228 (2009). https://doi.org/10.1007/s00894-009-0481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0481-6

Keywords

Navigation