Skip to main content
Log in

Tetraethylorthosilicate as molecular precursor to the formation of amorphous silica networks. A DFT-SCRF study of the base catalyzed hydrolysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantum chemical calculations using density functional theory have been carried out to investigate two chemical pathways for the last step of the hydrolysis of tetraethylorthosilicate (TEOS) in basic catalyzed environment. The two models that are introduced in this study depend on the number of water molecules involved at the base catalyzed hydrolysis. Solution equilibrium geometries of the molecules involved in the transition states, reactants and product complexes of the two chemical pathways were fully optimized at B3LYP level of theory with the standard 6-31+G(d) basis set, modeling solvent effects using a polarizable continuum solvation model (PCM). Both models predict relative low activation energies. However, the model with two water molecules seems to be more adequate to describe the basic hydrolysis. A natural bond orbital (NBO) analysis seems to show that the proton transfer from water to ethoxy group would occur through a large hyperconjugative interaction, LPO→σ*(O-H), which is related to the nonbonding oxygen lone pair orbital from ethoxy group with the vicinal σ*(O-H) anti bonding orbital O-H of a water molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The SCRF methodology reveals one negative frequency for the energy minimum in the RC1, PC1, RC3 and PC3 complexes. All of them are low, corresponding to the movement of OH bond in H2O molecule or the rotation of CH3 group. In this way, a second low negative frequency appears in the TS3 calculation. No negative frequencies have been obtained from the calculations in gas phase what could confirm these ones as theoretical artifacts from the SCRF methodology.

  2. The conversion of solvation free energies at 298K to a standard state 1M is performed by adding +1.89kcalmol−1 to the computed solvation free energy.

References

  1. Brinker CJ, Scherer GW (1990) Sol-gel science. The physics and chemistry of sol-gel processing. Academic, Dordrecht

  2. Hench LL, West JK (1990) The Sol-Gel Process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  3. Livage J, Sanchez C (1992) Sol-gel chemistry. J Non-Cryst Solids 145:11–19

    Article  CAS  Google Scholar 

  4. Sanchez C, Livage J (1990) Sol-gel chemistry from metal alkoxide precursors. New J Chem 14:513–521

    CAS  Google Scholar 

  5. Novak BM (1993) Hybrid nanocomposite materials - between inorganic glasses and organic polymers. Adv Mater 5:422–433

    Article  CAS  Google Scholar 

  6. Sanchez C, Livage J, Henry M, Babonneau F (1988) Chemical modification of alkoxide precursors. J Non-Cryst Solids 100:65–76

    Article  CAS  Google Scholar 

  7. Aelion R, Loebel A, Eirich F (1950) Hydrolysis of ethyl silicate. J Am Chem Soc 72:5705–5712

    Article  CAS  Google Scholar 

  8. Kirschhock CEA, Ravishankar R, Verspeurt F, Grobet PJ, Jacobs PA, Martens JA (1999) Identification of precursor species in the formation of MFI zeolite in the TPAOH-TEOS-H2O system. J Phys Chem B 103:4965–4971

    Article  CAS  Google Scholar 

  9. Corma A, Gomez V, Martinez A (1994) Zeolite-beta as a catalyst for alkylation of isobutane with 2-butene - influence of synthesis conditions and process variables. Appl Catal A Gen 119:83–96

    Article  CAS  Google Scholar 

  10. Wu YJ, Ren XQ, Lu YD, Wang J (2008) Rapid synthesis of zeolite MCM-22 by acid-catalyzed hydrolysis of tetraethylorthosilicate. Mater Lett 62:317–319

    Article  CAS  Google Scholar 

  11. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  CAS  Google Scholar 

  12. Cabrera S, El Haskouri J, Guillem C, Latorre J, Beltran-Porter A, Beltran-Porter D, Marcos MD, Amoros P (2000) Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sci 2:405–420

    Article  CAS  Google Scholar 

  13. Bao XY, Li X, Zhao XS (2006) Synthesis of large-pore methylene-bridged periodic mesoporous organosilicas and its implications. J Phys Chem B 110:2656–2661

    Article  CAS  Google Scholar 

  14. Iler RK (1979) The chemistry of Silica. Wiley, New York

    Google Scholar 

  15. Keefer K (1984) In: Brinker CJ, Clark D, Ulrich D (eds) Better Ceramics Through Chemistry. Elsevier, Dordrecht, pp 15–24

    Google Scholar 

  16. Pohl E, Osterholtz F (1985) Molecular characterization of composite interfaces. In: Ishida H, Kuma G (eds) Plenum, New York, p 157

  17. Kelts LW, Effinger NJ, Melpolder SM (1986) Sol-gel chemistry studied by H-1 And Si-29 nuclear-magnetic-resonance. J Non-Cryst Solids 83:353–374

    Article  CAS  Google Scholar 

  18. Smith KA (1986) A study of the hydrolysis of methoxysilanes in a 2-phase system. J Org Chem 51:3827–3830

    Article  CAS  Google Scholar 

  19. Pouxviel JC, Boilot JP (1987) Kinetic simulations and mechanisms of the sol-gel polymerization. J Non-Cryst Solids 94:374–386

    Article  CAS  Google Scholar 

  20. Kinrade SD, Swaddle TW (1988) Si-29 NMR-studies of aqueous silicate solutions.2. Transverse Si-29 relaxation and the kinetics and mechanism of silicate polymerization. Inorg Chem 27:4259–4264

    Article  CAS  Google Scholar 

  21. Leyden DE, Atwater JB (1991) Hydrolysis and condensation of alkoxysilanes investigated by internal-reflection Ftir spectroscopy. J Adhes Sci Technol 5:815–829

    Article  CAS  Google Scholar 

  22. Vanbeek JJ, Seykens D, Jansen JBH (1992) Si-29 NMR monitoring and kinetic modeling of an acid-catalyzed Tmos sol-gel system with molar H2O/Si = 8. J Non-Cryst Solids 146:111–120

    Article  CAS  Google Scholar 

  23. Fyfe CA, Aroca PP (1995) Quantitative Kinetic-Analysis By High-Resolution Si-29 Nmr-Spectroscopy Of The Initial-Stages In The Sol-Gel Formation Of Silica-Gel From Tetraethoxysilane. Chem Mater 7:1800–1806

    Article  CAS  Google Scholar 

  24. Alam TM, Assink RA, Loy DA (1996) Hydrolysis and esterification in organically modified alkoxysilanes: A Si-29 NMR investigation of methyltrimethoxysilane. Chem Mater 8:2366–2374

    Article  CAS  Google Scholar 

  25. Sanchez J, Rankin SE, McCormick AV (1996) Si-29 NMR kinetic study of tetraethoxysilane and ethyl-substituted ethoxysilane polymerization in acidic conditions. Ind Eng Chem Res 35:117–129

    Article  CAS  Google Scholar 

  26. Riegel B, Blittersdorf S, Kiefer W, Hofacker S, Muller M, Schottner G (1998) Kinetic investigations of hydrolysis and condensation of the glycidoxypropyltrimethoxysilane/aminopropyltriethoxy-silane system by means of FT-Raman spectroscopy I. J Non-Cryst Solids 226:76–84

    Article  CAS  Google Scholar 

  27. Tejedor-Tejedor MI, Paredes L, Anderson MA (1998) Evaluation of ATR-FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions. Chem Mater 10:3410–3421

    Article  CAS  Google Scholar 

  28. Lindberg R, Sundholm G, Oye G, Sjoblom J (1998) A new method for following the kinetics of the hydrolysis and condensation of silanes. Colloids Surf A Physicochem Eng Asp 135:53–58

    Article  CAS  Google Scholar 

  29. Rankin SE, Sefcik J, McCormick AV (1999) Similarities in the hydrolysis pseudoequilibrium behavior of methyl-substituted ethoxysilanes. Ind Eng Chem Res 38:3191–3198

    Article  CAS  Google Scholar 

  30. Rankin SE, Sefcik J, McCormick AV (1999) Trimethylethoxysilane liquid-phase hydrolysis equilibrium and dimerization kinetics: catalyst, nonideal mixing, and the condensation route. J Phys Chem A 103:4233–4241

    Article  CAS  Google Scholar 

  31. Rankin SE, McCormick AV (1999) Si-29 NMR study of base-catalyzed polymerization of dimethyldiethoxysilane. Magn Reson Chem 37:S27–S37

    Article  CAS  Google Scholar 

  32. Kim MT (2000) Deposition kinetics of silicon dioxide from tetraethylorthosilicate by PECVD. Thin Solid Films 360:60–68

    Article  CAS  Google Scholar 

  33. Karmakar B, De GT, Ganguli D (2000) Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J Non-Cryst Solids 272:119–126

    Article  CAS  Google Scholar 

  34. Donatti DA, Vollet DR, Ruiz AI (2003) Calorimetric study of the effect of water quantity on tetramethoxysilane hydrolysis under ultrasound stimulation. J Phys Chem B 107:3091–3094

    Article  CAS  Google Scholar 

  35. Delak KM, Farrar TC, Sahai N (2005) Si-29 NMR sensitivity enhancement methods for the quantitative study of organosilicate hydrolysis and condensation. J Non-Cryst Solids 351:2244–2250

    Article  CAS  Google Scholar 

  36. Jiang HM, Zheng Z, Li ZM, Wang XL (2006) Effects of temperature and solvent on the hydrolysis of alkoxysilane under alkaline conditions. Ind Eng Chem Res 45:8617–8622

    Article  CAS  Google Scholar 

  37. Jiang HM, Zheng Z, Xiong JW, Wang XL (2007) Studies on dialkoxysilane hydrolysis kinetics under alkaline conditions. J Non-Cryst Solids 353:4178–4185

    Article  CAS  Google Scholar 

  38. Jiang H, Zheng Z, Wang X (2008) Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib Spectrosc 46:1–7

    Article  CAS  Google Scholar 

  39. Mazur M, Mlynarik V, Valko M, Pelikan P (1999) The time evolution of the sol-gel process: Si-29 NMR study of hydrolysis and condensation reactions of tetramethoxysilane. Appl Magn Reson 16:547–557

    Article  CAS  Google Scholar 

  40. Harris MT, Brunson RR, Byers CH (1990) The base-catalyzed-hydrolysis and condensation-reactions of dilute and concentrated Teos solutions. J Non-Cryst Solids 121:397–403

    Article  CAS  Google Scholar 

  41. Cihlar J (1993) Hydrolysis and polycondensation of ethyl silicates.1. Effect of Ph and catalyst on the hydrolysis and polycondensation of tetraethoxysilane (Teos). Colloid Surf A Physicochem Eng Asp 70:239–251

    Article  CAS  Google Scholar 

  42. Liu RL, Xu X, Wu D, Sun YH, Gao HC, Yuan HZ, Deng F (2004) Comparative study on the hydrolysis kinetics of substituted ethoxysilanes by liquid-state Si-29 NMR. J Non-Cryst Solids 343:61–70

    Article  CAS  Google Scholar 

  43. Sefcik J, McCormick AV (1997) Kinetic and thermodynamic issues in the early stages of sol-gel processes using silicon alkoxides. Catal Today 35:205–223

    Article  CAS  Google Scholar 

  44. Yoon H-S, Park H-S, Kim S-H (1994) A kinetic study on the hydrolysis and condensation of TEOS in basic condition by sol-gel method. Hwahak Konghak 32:557–565

    CAS  Google Scholar 

  45. Artaki I, Bradley M, Zerda TW, Jonas J (1985) Nmr and raman-study of the hydrolysis reaction in sol-gel processes. J Phys Chem 89:4399–4404

    Article  CAS  Google Scholar 

  46. Okumoto S, Fujita N, Yamabe S (1998) Theoretical study of hydrolysis and condensation of silicon alkoxides. J Phys Chem A 102:3991–3998

    Article  CAS  Google Scholar 

  47. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  48. Pascual-ahuir JL, Silla E, Tuñón I (1994) Gepol - an improved description of molecular-surfaces.3. A new algorithm for the computation of a solvent-excluding surface. J Comput Chem 15:1127–1138

    Article  CAS  Google Scholar 

  49. Becke AD (1993) Density-functional thermochemistry.3. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  50. Lee CT, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B: Condens Matter 37:785–789

    Article  CAS  Google Scholar 

  51. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation-energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  53. Rablen PR, Lockman JW, Jorgensen WL (1998) Ab initio study of hydrogen-bonded complexes of small organic molecules with water. J Phys Chem A 102:3782–3797

    Article  CAS  Google Scholar 

  54. Gonzalez L, Mo O, Yanez M (1999) Density functional theory study on ethanol dimers and cyclic ethanol trimers. J Chem Phys 111:3855–3861

    Article  CAS  Google Scholar 

  55. Tsuzuki S, Houjou H, Nagawa Y, Goto M, Hiratani K (2001) Cooperative enhancement of water binding to crownophane by multiple hydrogen bonds: analysis by high level ab initio calculations. J Am Chem Soc 123:4255–4258

    Article  CAS  Google Scholar 

  56. Zhang Q, Bell R, Truong TN (1995) Ab-initio and density-functional theory studies of proton-transfer reactions in multiple hydrogen-bond systems. J Phys Chem 99:592–599

    Article  CAS  Google Scholar 

  57. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983) Efficient diffuse function-augmented basis-sets for anion calculations.3. The 3-21+G basis set for 1st-row elements, Li-F. J Comput Chem 4:294–301

    Article  CAS  Google Scholar 

  58. Bondi A (1964) Van Der Waals volumes + radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  59. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction-path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  60. Fukui K (1981) The path of chemical-reactions - the Irc approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  61. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  62. Reed AE, Weinhold F (1985) Natural localized molecular-orbitals. J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  63. Reed AE, Weinstock RB, Weinhold F (1985) Natural-population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  64. Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 78:4066–4073

    Article  CAS  Google Scholar 

  65. Foster JP, Weinhold F (1980) Natural Hybrid Orbitals. J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  66. Fernandez L, Viruela-Martin P, Latorre J, Guillem C, Beltrán A, Amorós P (2007) Molecular precursors of mesostructured silica materials in the atrane route. A DFT/GIAO/NBO theoretical study. J Mol Struct THEOCHEM 822:89–102

    Article  CAS  Google Scholar 

  67. Liu XD, Lu XC, Meijer EJ, Wang RC, Zhou HQ (2010) Acid dissociation mechanisms of Si(OH)(4) and Al(H(2)O)(6)(3+) in aqueous solution. Geochim Cosmochim Acta 74:510–516

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Generalitat Valenciana (GV2008-122). Lorenzo Fernandez was supported by the Ramon y Cajal program by the Ministry of Science and Technology from Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, L., Tuñón, I., Latorre, J. et al. Tetraethylorthosilicate as molecular precursor to the formation of amorphous silica networks. A DFT-SCRF study of the base catalyzed hydrolysis. J Mol Model 18, 3301–3310 (2012). https://doi.org/10.1007/s00894-011-1345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1345-4

Keywords

Navigation