Skip to main content

Advertisement

Log in

Al2Mo3O12/polyethylene composites with reduced coefficient of thermal expansion

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, polymer composites reinforced with low fractions of thermomiotic nanoceramics have triggered a lot of research. The efforts have been focused on achieving considerable reduction of the coefficient of thermal expansion (CTE) of polymeric materials without deterioration of other physical properties. In this context, polyethylene (PE) composites reinforced with different loads of Al2Mo3O12 nanofillers (0.5–4 mass %) were fabricated by micro-compounding. To enhance the interfacial interaction between the two components, chemical functionalization of Al2Mo3O12 was performed with vinyltrimethoxysilane (VTMS) prior to micro-compounding. Infrared spectroscopy and thermogravimetry demonstrated the successful grafting of VTMS on the Al2Mo3O12 surface. The composites showed strongly decreased CTEs, up to 46 % reduction for loadings of 4 mass % compared with neat PE, suggesting intimate filler–matrix interactions. The variation of CTEs of the composites in terms of the filler fraction was successfully described by Turner’s model allowing calculation of the bulk modulus of monoclinic Al2Mo3O12 (13.6 ± 2.6 GPa), in agreement with the value obtained by an ultrasonic method. The thermal stability of the composites was improved, although the addition of functionalized fillers decreased the degree of crystallinity of the PE to a small extent. The Young’s modulus and yield strength of the composites increased from 6.6 to 19.1 % and 4.0–6.0 %, respectively, supporting the existence of strong filler–matrix interactions, contributing to an efficient load transfer. Finite element analysis of thermal stresses indicated absence of plastic deformation of the matrix or fracture of the nanofillers, for a 100 K temperature drop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Romao CP, Miller KJ, Whitman CA, White MA, Marinkovic BA (2013) Negative Thermal Expansion (Thermomiotic) Materials. In: Reedijk J, Poeppelmeier K (eds) Comprehensive Inorganic Chemistry II, vol 4. Elsevier, Oxford, pp 127–151

    Chapter  Google Scholar 

  2. Evans JS, Mary TA, Vogt T, Subramanian MA, Sleight AW (1996) Negative thermal expansion in ZrW2O8 and HfW2O8. Chem Mater 8:2809–2823

    Article  Google Scholar 

  3. Evans JS, Mary TA, Sleight AW (1997) Negative thermal expansion in a large molybdate and tungstate family. J Solid State Chem 133:580–583

    Article  Google Scholar 

  4. Lind C, Wilkinson AP, Hu Z, Short S, Jorgensen JD (1998) Synthesis and properties of the negative thermal expansion material cubic ZrMo2O8. Chem Mater 10:2335–2337

    Article  Google Scholar 

  5. Evans JS, Mary TA, Sleight AW (1998) Negative thermal expansion in Sc2(WO4)3. J Solid State Chem 137:148–160

    Article  Google Scholar 

  6. Evans JS, Mary TA (2000) Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int J Inorg Mater 2:143–151

    Article  Google Scholar 

  7. Sumitra S, Waghmare UV, Umarji AM (2007) Anomalous dynamical charges, phonons, and the origin of negative thermal expansion in Y2W3O12 Phys. Rev. B 76:024307

    Article  Google Scholar 

  8. Marinkovic BA, Ari M, de Avillez RR, Rizzo F, Ferreira FF, Miller KJ, Johnson MB, White MA (2009) Correlation between AO6 polyhedral distortion and negative thermal expansion in orthorhombic Y2Mo3O12 and related materials. Chem Mater 21:2886–2894

    Article  Google Scholar 

  9. Prisco LP, Romao CP, Rizzo F, White MA, Marinkovic BA (2013) The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12. J Mater Sci 48:2986–2996

    Article  Google Scholar 

  10. Kim IJ, Gauckler LJ (2008) Excellent thermal shock resistant materials with low thermal expansion coefficients. J Ceram Process Res 9:240–245

    Google Scholar 

  11. Shi JD, Pu ZJ, Wu KH, Larkins G (1997) Composite materials with adjustable thermal expansion for electronic applications. Mater Res Soc Symp Proc 445:229–234

    Article  Google Scholar 

  12. Holzer H, Dunand DC (1999) Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites. J Mater Res 14:780–789

    Article  Google Scholar 

  13. Kofteros M, Rodriguez S, Tandon V, Murr LE (2001) A preliminary study of thermal expansion compensation in cement by ZrW2O8 additions. Scripta Mater 45:369–374

    Article  Google Scholar 

  14. Tran KD, Groshens TJ, Nelson JG (2001) Fabrication of near-zero thermal expansion (FexSc1-X)2Mo3O12-MoO3 ceramic composite using the reaction sintering process. Mater Sci and Eng A 303:234–240

    Article  Google Scholar 

  15. Sullivan LM, Lukehart CM (2005) Zirconium tungstate (ZrW2O8)/Polyimide nanocomposites exhibiting reduced coefficient of thermal expansion. Chem Mater 17:2136–2141

    Article  Google Scholar 

  16. Tani J, Kimura H, Hirota K, Kido H (2007) Thermal expansion and mechanical properties of phenolic resin/ZrW2O8 composites. J Appl Polym Sci 106:3343–3347

    Article  Google Scholar 

  17. Goertzen WK, Kessler MR (2008) Three-phase cyanate ester composites with fumed silica and negative-CTE reinforcements. J Therm Anal Calorim 93:87–93

    Article  Google Scholar 

  18. Watanabe H, Tani J, Kido H, Mizzuchi K (2008) Thermal expansion and mechanical properties of pure magnesium containing zirconium tungsten phosphate particles with negative thermal expansion. Mater Sci Eng, A 494:291–298

    Article  Google Scholar 

  19. Yanase I, Miyagi M, Kobayashi H (2009) Fabrication of zero-thermal-expansion ZrSiO4/Y2W3O12 sintered body. J Eur Ceram Soc 29:3129–3134

    Article  Google Scholar 

  20. Kanamori K, Kineri T, Fukuda R, Kawano T, Nishio K (2009) Low-temperature sintering of ZrW2O8-SiO2 by spark plasma sintering. J Mater Sci 44:855–869

    Article  Google Scholar 

  21. Yang J, Yang Y, Qinqin L, Guifang X, Cheng X (2010) Preparation of negative thermal expansion ZrW2O8 powders and its application in polyimide/ZrW2O8 composites. J Mater Sci Technol 26:665–668

    Article  Google Scholar 

  22. Tani J, Takahashi M, Kido H (2010) Fabrication and thermal expansion properties of ZrW2O8/Zr2WP2O12 composites. J Eur Ceram Soc 30:1483–1488

    Article  Google Scholar 

  23. Lind C, Coleman MR, Kozy LC, Sharma GR (2011) Zirconium tungstate/polymer nanocomposites: challenges and opportunities. Phys Status Solidi B 248:123–129

    Article  Google Scholar 

  24. Chu X, Huang R, Yang H, Wu Z, Lu J, Zhou Y, Li L (2011) The cryogenic thermal expansion and mechanical properties of plasma modified ZrW2O8 reinforced epoxy. Mater Sci Eng, A 528:3367–3374

    Article  Google Scholar 

  25. Sharma GR, Lind C, Coleman MR (2012) Preparation and properties of polyimide nanocomposites with negative thermal expansion nanoparticle filler. Mater Chem Phys 137:448–457

    Article  Google Scholar 

  26. Yamashina N, Isobe T, Ando S (2012) Low thermal expansion composites prepared from polyimide and ZrW2O8 particles with negative thermal expansion. J Photopolym Sci Technol 25:385–388

    Article  Google Scholar 

  27. Wu Y, Wang M, Chen Z, Ma N, Wang H (2013) The effect of phase transformation on the thermal expansion property in Al/ZrW2O8 composites. J Mater Sci 48:2928–2933

    Article  Google Scholar 

  28. Peng Z, Sun YZ, Peng LM (2014) Hydrothermal synthesis of ZrW2O8 nanorods and its application in ZrW2O8/Cu composites with controllable thermal expansion coefficients. Mate Des 54:989–994

    Article  Google Scholar 

  29. Liu QQ, Cheng XN, Yang J, Sun XJ (2011) Influence of fabrication method on the structure and thermal expansion property of ZrWMoO8 and its composites. J Mater Sci 46:1253–1258

    Article  Google Scholar 

  30. Suzhu Y, Hing P, Hu X (2000) Thermal expansion behaviour of polystyrene-aluminium nitride composites. J Phys D Appl Phys 33:1606–1610

    Article  Google Scholar 

  31. Wong CP, Bollampally RS (1999) Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J Appl Polym Sci 74:3396–3403

    Article  Google Scholar 

  32. Take WA, Watson E, Brachman RW, Rowe RK (2012) Thermal expansion and contraction of geomembrane liners subjected to solar exposure and backfilling. J Geotech Geoenviron 138:1287–1397

    Google Scholar 

  33. Skjevrak I, Due A, Gjerstad KO, Herikstad H (2003) Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drink water. Water Res 37:1912–1920

    Article  Google Scholar 

  34. Sahebian S, Zebarjad SM, Sajjadi SA (2010) Role of surface active agent on dimensional stability of HDPE/CaCO3 nanocomposites. J Thermoplast Compos Mater 23:583–596

    Article  Google Scholar 

  35. Baglari S, Kole M, Dey TK (2011) Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene - fly ash composites. Indian J Phys 85:559–573

    Article  Google Scholar 

  36. Dey TK, Tripathi M (2010) Thermal properties of silicon powder filled high-density polyethylene composites. Thermochim Acta 502:35–42

    Article  Google Scholar 

  37. Manu KM, Ananthakumar S, Sebastian MT (2013) Electrical and thermal properties of low permittivity Sr2Al2SiO7 ceramic filled HDPE composites. Ceram Int 39:4945–4951

    Article  Google Scholar 

  38. Anjana PS, Deepu V, Uma S, Mohanan P, Philip J, Sebastian MT (2010) Dielectric, thermal, and mechanical properties of CeO2-Filled HDPE composites for microwave substrate applications. J Polym Sci, Part B: Polym Phys 48:998–1008

    Article  Google Scholar 

  39. Pöllänen M, Suihkonen R, Nevalainen K, Koistinen AP, Suvanto M, Vuorinen J, Pakkanen T (2012) Morphological, mechanical, tribological, and thermal expansion properties of organoclay reinforced polyethylene composites. Polym Eng Sci 53:1279–1286

    Article  Google Scholar 

  40. Liu QQ, Cheng XN, Yang J (2012) Development of low thermal expansion Sc2(WO4)3 containing composites. Mater Tech 27:388–392

    Article  Google Scholar 

  41. Marinkovic BA, Ari M, Jardim PM, de Avillez RR, Rizzo F, Ferreira FF (2010) In2Mo3O12: A low negative thermal expansion compound. Thermochim Acta 499:48–53

    Article  Google Scholar 

  42. Xiao XL, Cheng YZ, Peng J, Wu MM, Chen DF, Hu ZB, Kiyanagi R, Fieramosca JS, Short S, Jorgensen J (2008) Thermal expansion properties of A2(MO4)3 (A = Ho and Tm; M = W and Mo). Solid State Sci 10:321–325

    Article  Google Scholar 

  43. Ari M, Jardim PM, Marinkovic BA, Rizzo F, Ferreira FF (2008) Thermal expansion of Cr2xFe2-2xMo3O12, Al2xFe2-2xMo3O12 and Al2xCr2-2xMo3O12 solid solutions. J Solid State Chem 181:1472–1479

    Article  Google Scholar 

  44. Ari M, Miller KJ, Marinkovic BA, Jardim PM, de Avillez R, Rizzo F, White MA (2011) Rapid synthesis of the low thermal expansion phase of Al2Mo3O12 via a sol–gel method using polyvinyl alcohol. J Sol-Gel Sci Technol 58:121–125

    Article  Google Scholar 

  45. Pontón PI, d’Almeida JM, Marinkovic BA, Savic SM, Mancic L, Rey NA, Morgado EJr, Rizzo FC (2014) The effects of the chemical composition of titanate nanotubes and solvent type on 3-aminopropyltriethoxysilane grafting efficiency. Appl Surf Sci 301:315–322

    Article  Google Scholar 

  46. Asmani M, Kermel C, Leriche A, Ourak M (2001) Influence of porosity on Young’s modulus and Poisson ration in alumina ceramics. J Eur Ceram Soc 21:1081–1086

    Article  Google Scholar 

  47. http://www.paralab.pt/sites/default/files/pdf/DIL402C.pdf. Accessed 17 Feb 2014

  48. Kuznetsova A, Wovchko EA, Yates JT (1997) FTIR study of the adsorption and thermal behavior of vinyltriethoxysilane chemisorbed on γ-Al2O3. Langmuir 13:5322–5328

    Article  Google Scholar 

  49. Liao CZ, Tjong SC (2013) Mechanical and thermal performance of high-density polyethylene/alumina nanocomposites. J Macromol Sci Part B Phys 52:812–825

    Article  Google Scholar 

  50. Nguyen VG, Thai H, Mai HD, Tran HT, Tran DL, Vu MT (2013) Effect of titanium dioxide on the properties of polyethylene/TiO2 nanocomposites. Compos B 45:1192–1198

    Article  Google Scholar 

  51. Abboud M, Turner M, Duguet E, Fontanille M (1997) PMMA-based composite materials with reactive ceramic fillers Part 1. —Chemical modification and characterisation of ceramic particles. J Mater Chem 7:1527–1532

    Article  Google Scholar 

  52. Byrne MT, McCarthy EJ, Bent M, Blake R (2007) Chemical functionalisation of titania nanotubes and their utilisation for the fabrication of reinforced polystyrene composites. J Mater Chem 17:2351–2358

    Article  Google Scholar 

  53. Guo Z, Pereira T, Choi O, Wang Y, Hahn HT (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16:2800–2808

    Article  Google Scholar 

  54. Gao J-g Yu, M-s Li Z-t (2004) Nonisothermal crystallization kinetics and melting behavior of bimodal medium density polyethylene/low density polyethylene blends. Eur Polym J 44:1533–1539

    Article  Google Scholar 

  55. Varga T, Wilkinsin AP, Jorgensen JD, Short S (2006) Neutron powder diffraction study of the orthorhombic to monoclinic transition in Sc2W3O12 on compression. Solid State Sci 8:289–295

    Article  Google Scholar 

  56. Varga T, Wilkinson AP, Lind C, Bassett WA, Zha C (2005) High pressure synchrotron x-ray powder diffraction study of Sc2Mo3O12 and Al2W3O12. J Phys: Condens Matter 17:4271–4283

    Google Scholar 

  57. Baiz TI, Heinrich PC, Banek NA, Vivekens BL, Lind C (2012) In-situ non-ambient X-ray diffraction studies of indium tungstate. J Solid State Chem 187:195–199

    Article  Google Scholar 

  58. Cetinkol M, Wilkinsion AP, Lind C (2009) In situ high-pressure synchrotron x-ray diffraction study of Zr2(WO4)(PO4)2 up to 16 GPa. Phys Rev B 79:224118

    Article  Google Scholar 

  59. Drymiotis FR, Ledbetter H, Betts JB, Kimura T, Lashley JC, Migliori A (2004) Monocrystal elastic constants of the negative-thermal-expansion compound zirconium tungstate (ZrW2O8). Phys Rev Lett 93:025502

    Article  Google Scholar 

  60. Takenaka K (2012) Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 13:013001

    Article  Google Scholar 

  61. Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers, Thermochim Acta 523:1–24

    Google Scholar 

  62. Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris D (2009) Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J Appl Polym Sci 114:1606–1618

    Article  Google Scholar 

  63. Aizan W, Rahman WA (2006) Design of silane crosslinkable high density polyethylene compounds for automotive fuel tank application. Universiti Teknologi Malaysia, Proyect Report

    Google Scholar 

  64. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng, R 53:73–197

    Article  Google Scholar 

  65. Li S, Chen H, Cui D, Li J, Zhang Z, Wang Y, Tang T (2010) Structure and properties of multi-walled carbon nanotubes/polyethylene nanocomposites synthesized by in situ polymerization with supported Cp2ZrCl2 catalyst. Polym Compos 31:507–515

    Google Scholar 

  66. Sewda K, Maiti SN (2009) Mechanical properties of teak wood flour-reinforced HDPE composites. J Appl Polym Sci 112:1826–1834

    Article  Google Scholar 

  67. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MS, Simões JAO (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67:3071–3077

    Article  Google Scholar 

  68. Zebarjad SM, Sajjadi SA, Tahani M, Lazzeri A (2006) A study on thermal behaviour of HDPE/CaCO3 nanocomposites. J Achiev Mater Manuf Eng 17:173–176

    Google Scholar 

  69. Tavman IH (1997) Thermal and mechanical properties of copper powder filled poly(ethylene) composites. Powder Technol 91:63–67

    Article  Google Scholar 

Download references

Acknowledgments

B.A. Marinkovic and J.R.M. d’Almeida are grateful to CNPq (National Council for Scientific and Technological Development) for a Research Productivity Grants. Patricia I. Pontón is also grateful to CNPq for scholarship. M.A. White acknowledges support of NSERC through the Discovery Grants program. We thank J.W. Zwanziger for use of the ultrasonic transducer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan A. Marinkovic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, A.R., Pontón, P.I., Mancic, L. et al. Al2Mo3O12/polyethylene composites with reduced coefficient of thermal expansion. J Mater Sci 49, 7870–7882 (2014). https://doi.org/10.1007/s10853-014-8498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8498-3

Keywords

Navigation