Skip to main content
Log in

Evaluation of the use of marble waste in hydrated lime cement mortar based

  • NOTE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The civil construction sector is one of the industrial segments with higher level for environmental degradation, due to the excessive exploitation of natural resources and to the high amount of pollutant gasses generated in the manufacturing of important construction materials. Due to this, the purpose of this paper was to check the possibility of the total or at least partial replacement of hydrated lime by marble waste originated from an industry of ornamental Brazilian rocks in block and wall laying mortars, thus contributing for the sustainability in the construction sector. The verification of such replacement was performed by the characterization of the hydrated lime and marble powder, and the production of mortars by substituting 0%, 25%, 50%, 75%, and 100% of hydrated lime by marble waste. Furthermore, the main properties of the mortars studied were checked, to set if the incorporation of the waste would cause any damage in the parameters analyzed. The results confirmed the possibility of partial replacement of the hydrated lime by marble waste in up to 50%, although the total replacement was not possible. Thus, the study presented attained the goal proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Turk J, Cotic Z, Mladenovic A, Sajna A (2015) Environmental evaluation of green concretes versus conventional concrete by means of LCA. Waste Manag 45:194–205

    Article  Google Scholar 

  2. Vieira LBP, Figueiredo AD (2016) Evaluation of concrete recycling system efficiency for ready-mix concrete plants. Waste Manag 56:337–351

    Article  Google Scholar 

  3. Xu S, Wang J, Jiang Q, Zhang S (2016) Study of natural hydraulic lime-based mortars prepared with masonry waste powder as aggregate and diatomite/fly ash as mineral admixtures. J Clean Prod 119:118–127

    Article  Google Scholar 

  4. Na O, Xi Y (2017) Mechanical and durability properties of insulation mortar with rubber powder from waste tires. J Mater Cycles Waste Manag 19:763–773

    Article  Google Scholar 

  5. Kim HS, Kim B, Kim KS, Kim JM (2017) Quality improvement of recycled aggregates using the acid treatment method and the strength characteristics of the resulting mortar. J Mater Cycles Waste Manag 19:968–976

    Article  Google Scholar 

  6. Lim LK, Kuo TM, Hsu YS (2016) The application and evaluation research of coffee residue ash into mortar. J Mater Cycles Waste Manag 18:541–551

    Article  Google Scholar 

  7. Palomar I, Barluenga G, Puentes J (2015) Lime–cement mortars for coating with improved thermal and acoustic performance. Constr Build Mater 75:306–314

    Article  Google Scholar 

  8. Cuadrado JG, Rodríguez A, Cuesta II, Caldéron V, González SG (2017) Study and analysis by means of surface response to fracture behavior in lime–cement mortars fabricated with steelmaking slags. Constr Build Mater 138:204–213

    Article  Google Scholar 

  9. Schneemayer A, Schranz C, Kolbitsch A, Tschegg EK (2017) Fracture-mechanical properties of mortar-to-brick interfaces. J Mater Civ Eng 26(9):04014060

    Article  Google Scholar 

  10. Silva BA, Pinto APF, Gomes A (2014) Influence of natural hydraulic lime content on the properties of aerial lime-based mortars. Constr Build Mater 72:208–218

    Article  Google Scholar 

  11. Cho JS, Moon KY, Chol MK, Cho JW, Yeon KS (2017) Performance improvement of local Korean natural hydraulic lime-based mortar using inorganic by-products. Korean J Chem Eng 34(5):1385–1392

    Article  Google Scholar 

  12. George PAO, Gutiérrez AS, Martínez JBC, Vandecasteele C (2010) Cleaner production in a small lime factory by means of process control. J Clean Prod 18:1171–1176

    Article  Google Scholar 

  13. Dowling A, O’Dwyer J, Adley CC (2015) Lime in the limelight. J Clean Prod 92:13–22

    Article  Google Scholar 

  14. Stefanidou M, Anastasiou E, Filikas KG (2014) Recycled sand in lime-based mortars. Waste Manag 34:2595–2602

    Article  Google Scholar 

  15. Singh M, Choudhary K, Srivastava A, Sangwan KS, Bhunia D (2017) A study on environmental and economic impacts of using waste marble powder in concrete. J Build Eng 13:87–95

    Article  Google Scholar 

  16. Dantas APA, Acchar W, Leite JYP, Araújo FSD (2010) Utilização de resíduos de rochas ornamentais na produção de cerâmica branca. Holos Ano 26(1):92–108

    Article  Google Scholar 

  17. Buyuksagis IS, Uygunoglu T, Tatar E (2017) Investigation on the usage of waste marble powder in cement-based adhesive mortar. Constr Build Mater 154:734–742

    Article  Google Scholar 

  18. Corinaldesi V, Moriconi G, Naik TR (2010) Characterization of marble powder for its use in mortar and concrete. Constr Build Mater 24:113–117

    Article  Google Scholar 

  19. Ergun A (2011) Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Constr Build Mater 25:806–812

    Article  Google Scholar 

  20. Vardhan K, Goyal S, Siddique R, Singh M (2015) Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr Build Mater 96:615–621

    Article  Google Scholar 

  21. Rana A, Kalla P, Csetenyi LJ (2015) Sustainable use of marble slurry in concrete. J Clean Prod 94:304–311

    Article  Google Scholar 

  22. Arel HS (2016) Recyclability of waste marble in concrete production. J Clean Prod 131:179–188

    Article  Google Scholar 

  23. Gutiérrez AS, Caneglen JV, Martínez JBC, Vandecasteele C (2012) Evaluation of the environmental performance of lime production in Cuba. J Clean Prod 31:126–136

    Article  Google Scholar 

  24. Associação Brasileira de Normas Técnicas (2012) Materiais pozolânicos – Determinação de atividade pozolânica com cimento Portland – Índice de atividade pozolânica com cimento: NBR 5752. Rio de Janeiro

  25. Associação Brasileira de Normas Técnicas (2016) Argamassa para assentamento e revestimento de paredes e tetos – Preparo da mistura e determinação do índice de consistência: NBR 13276. Rio de Janeiro

  26. Associação Brasileira de Normas Técnicas (2010) Argamassa de assentamento e revestimento de paredes e tetos – Caracterização reológica pelo método squeeze-flow: NBR 15839. Rio de Janeiro

  27. Azevedo ARG, Alexandre J, Zanelato EB, Marvila MT (2017) Influence of incorporation of glass waste on the rheological properties of adhesive mortar. Constr Build Mater 148:359–368

    Article  Google Scholar 

  28. Associação Brasileira de Normas Técnicas (2005) Argamassa para assentamento e revestimento de paredes e tetos – Determinação da resistência à tração na flexão e à compressão: NBR 13279. Rio de Janeiro

  29. Associação Brasileira de Normas Técnicas (2005) Argamassa para assentamento e revestimento de paredes e tetos – Determinação da retenção de água: NBR 13277. Rio de Janeiro

  30. Haach VG, Carrazedo R, Oliveira LMF (2017) Resonant acoust evaluation of mechanical properties of masonry mortars. Constr Build Mater 152:494–505

    Article  Google Scholar 

  31. Associação Brasileira de Normas Técnicas (2005) Argamassa para assentamento e revestimento de paredes e tetos – Determinação da absorção de água por capilaridade e do coeficiente de capilaridade: NBR 15259. Rio de Janeiro

  32. Associação Brasileira de Normas Técnicas (2009) Argamassa e concretos endurecidos – Determinação da absorção de água, índice de vazios e massa específica: NBR 9778. Rio de Janeiro

  33. Associação Brasileira de Normas Técnicas (2010) Revestimento de paredes de argamassas inorgânicas – Determinação da resistência de aderência à tração: NBR 13528. Rio de Janeiro

  34. Li J, McDougall SR, Sorbie KS (2017) Dynamic pore-scale network model (PNM) of water imbibition in porous media. Adv Water Resour 107:191–211

    Article  Google Scholar 

  35. Sing KSW, Williams RT (2012) Historical aspects of capillarity and capillary condensation. Microporous Mesoporous Mater 15:16–18

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the CAPES (Pro-engenharias Program) and FAPERJ (Foundation for protection of research in the state of Rio de Janeiro) for the financial support and the research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markssuel Teixeira Marvila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marvila, M.T., Alexandre, J., de Azevedo, A.R.G. et al. Evaluation of the use of marble waste in hydrated lime cement mortar based. J Mater Cycles Waste Manag 21, 1250–1261 (2019). https://doi.org/10.1007/s10163-019-00878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00878-6

Keywords

Navigation