Skip to main content
Log in

Theory of a low magnetic field gyrotron (gyromagnetron)

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Hirshfield and V.L. Granatstein, “The electron cyclotron maser—An historical survey,” IEEE Trans., Vol.MTT25, pp. 522–527, 1977.

    Google Scholar 

  2. R.S. Symons and H.R. Jory, “Cyclotron resonances devices,” Advances in Electronics and Electron Physics, Vo.55, pp. 1–75. [Ed.; L. Marton and C. Marton, Academic Press,] 1981.

    Google Scholar 

  3. P.A. Lindsay, “Gyrotrons (Electron cyclotron masers): Different mathematical models,” IEEE J. Quantum Electron., Vol.QE17, pp. 1327–1333, 1981.

    Google Scholar 

  4. A.V. Gaponov, V.A. Flyagin, A.L. Goldenberg, G.S. Nusinovich, S.E. Tsimring, V. G. Usov, and S.N. Vlasov, “Powerful millimeter-wave gyrotrons,” Int. J. Electron., Vol.51, pp. 277–302, 1981.

    Google Scholar 

  5. V.L. Granatstein, M. Read, and L.R. Barnett, “Measured performance of gyrotron oscillators and amplifiers,” Infrared and Millimeter Waves, Vol.5, Acad. Press, (1982).

  6. Y.Y. Lau and L.R. Barnett, “A low magnetic field gyrotron—Gyromagnetron,” Int. J. Electronics (Oct. 1982 issue). Also, Patent Disclosure, Navy Case No. 66508 (March 4, 1982).

  7. J. Feinstein and H.R. Jory, “High frequency electron discharge device,” U.S. Patent No. 3457450, July 22, 1969. Interest in this device is recently revived by A. Kupiszewski, N.C. Luhman, and H. Jory, “Compact cyclotron resonance maser” Paper W-2-5, Sixth Int. Conf. Infrared MM waves, Miami (Dec. 1981).

  8. K.R. Chu, “Theory of electron cyclotron maser interaction in a cavity at the harmonic frequencies,” Phys. Fluids, Vol.21, pp. 2354–2364, 1978.

    Google Scholar 

  9. W.W. Destler, R.L. Weiler, and C.D. Striffler, “High power microwave wave generation from a rotatingE layer in a magnetron-type waveguide,” Appl. Phys. Lett. Vol.38, pp. 570–572, 1981. An earlier experiment using a smooth waveguide was performed by W.W. Destler, D.W. Hudgings, M.J. Rhee, S. Kawasaki, and V.L. Granatstein, “Experimental study of microwave generation and suppression in a non-neutralE-layer,” J. Appl. Phys.48, pp. 3291–3296, 1977. A recent theoretical paper on this experiment is given by W.W. Destler, H. Romero, C.D. Striffler, R.L. Weiler, and W. Namkung, “Intense microwave generations from a non-neutral rotatingE-layer,” J. Appl. Phys.52, pp. 2740–2749, 1981.

    Google Scholar 

  10. N.C. Christofilos, R.J. Briggs, R.E. Hester, E.J. Lauer, P.B. Weiss, inProc. Conf. Plasma Phys. and Controlled Nuclear Fusion Research, (IAEA, Vienna), Vol.2, p. 211 (1966). See also, J. Beal, R.J. Briggs, R.E. Hester, E.J. Lauer, and P.B. Weiss, Bull. Am. Phys. Soc., Vol.11, p. 565 (1966). The first six cyclotron harmonic of the negative mass instability were definitively identified in the Astron. Higher harmonics were observed qualitatively.

  11. R.J. Briggs and V.K. Neil, “Negative mass instability in cylindrical layer of relativistic electrons,”J. Nuclear Energy, Vol.C9, pp. 209–227, 1967. The importance of synchronous interaction was first noted in this paper, as was confirmed by M.S. Grewal and J.A. Byers, “A computational study of the negative mass instability in the nonlinear regime,” Plasma Physics, Vol. 11, pp. 727–738, 1969.

    Google Scholar 

  12. Y.Y. Lau and R.J. Briggs, “Effects of cold plasma on the negative mass instability of a relativistic electron layer,”Phys. Fluids, Vol.14, pp. 967–976, 1971.

    Google Scholar 

  13. C.E. Nielsen, A.M. Sessler, and K.R. Symon, inProc. Int. Conf. on High-Energy Accelerators and Instrumentation (Geneva, Switzerland). Geneva: CERN, 1959, p. 239.

    Google Scholar 

  14. A.A. Kolomenskii and A.N. Lebedev, inProc. Int. Conf. on High-Energy Accelerators and Instrumentation (Geneva, Switzerland). Geneva: CERN, 1959, p. 115.

    Google Scholar 

  15. R.W. Landau and V.K. Neil, “Negative mass instability,”Phys. Fluids, Vol.9, pp. 2412–2427, 1966.

    Google Scholar 

  16. H. Uhm and R.C. Davidson, “Kinetic description of negative mass instability in an intense relativistic nonneutralE-layer,”Phys. Fluids, Vol. 20, pp. 771–784, 1977.

    Google Scholar 

  17. Y.Y. Lau, M.J. Baird, L.R. Barnett, K.R. Chu, and V.L. Granatstein, “Cyclotron maser instability as a resonant limit of space charge wave,” Int. J. Electron., Vol.51, pp. 331–340, 1981.

    Google Scholar 

  18. Y.Y. Lau, “Simple macroscopic theory of cyclotron maser instability,” IEEE Trans., Vol.ED-29, pp. 320–335, 1982.

    Google Scholar 

  19. See, e.g., N.M. Kroll and W.E. Lamb, “The resonant modes of rising sun and other unstrapped magnetron anode blocks,”J. Appl. Phys. Vol.29, pp. 166–186 (1948).

    Google Scholar 

  20. Y.Y. Lau and K.R. Chu, “Gyrotron Traveling Wave Amplifier III: A proposed wide band fast wave amplifier,” Int. J. Infrared and Millimeter Waves, Vol.2, pp. 415–425, 1981.

    Google Scholar 

  21. K.R. Chu, Y.Y. Lau, L.R. Barnett, and V.L. Granatstein, “Theory of a wide-band distributed gyrotron travelling wave amplifier,” IEEE Trans., Vol.ED-28, pp. 866–871, 1981.

    Google Scholar 

  22. L.R. Barnett, Y.Y. Lau, K.R. Chu, and V.L. Granatstein, “An experimental wide-band gyrotron travelling wave amplifier,” IEEE Trans., Vol.,ED-28, pp. 872–875, 1981.

    Google Scholar 

  23. Y.Y. Lau, L.R. Barnett, and V.L. Granatstein, “Gyrotron Travelling Wave Amplifier: IV. Analysis of launching loss,” Int. J. Infrared and Millimeter Waves, Vol.3, pp. 45–62, 1982.

    Google Scholar 

  24. See, e.g., R.E. Collins,Field theory of guided waves, p. 384, McGraw Hill, 1960.

  25. J.R. Pierce,Travelling Wave Tubes, Princeton, NJ: Van Nostrand, 1950. See, also, M. Chodorow and C. Susskind,Fundamentals of Microwave Electronics, McGraw-Hill, 1964.

    Google Scholar 

  26. See, e.g., R.G.E. Hutter,Beam and Wave Electronics in Microwave Tubes, Boston Technical Publishers, Inc. (1960).

  27. See, e.g., H. Motz,Electromagnetic problems in microwave theory, Methuen, London, p. 123 (1951). An electrostatic fringe field as an assumed solution has also been known to yield an accurate solution in the variational formulation involving waveguide discontinuies. See J. Schwinger and Saxon,Waveguide Discontinuities, Gordon and Breech, New York, 1968.

    Google Scholar 

  28. See Ref. 24, R.E. Collins,Field theory of guided waves, p. 384, McGraw Hill, 1960.

  29. A. Palevsky and G. Bekefi, “Microwave emission from pulsed, relativistice-beam diode. II. The multiresonator magnetron,” Phys. Fluids, Vol.22, pp. 986–996 (1979).

    Google Scholar 

  30. Y.Y. Lau, K.R. Chu, L.R. Barnett, and V.L. Granatstein, “Gyrotron travelling wave amplifier: I. Analysis of oscillations,”Int. J. Infrared Millimeter Waves, Vol.2, pp. 373–393, 1981.

    Google Scholar 

  31. Such a dispersion relation has been proved to be extremely useful in the design of a tapered waveguide and a tapered magnetic field for wide band operation. See Ref. [20].

    Google Scholar 

  32. P. Sprangle and A.T. Drobot, “The linear and self-consistent nonlinear theory of the electron cyclotron maser instability,”IEEE Trans. Microwave Theory Tech., Vol.MTT-25, pp. 528–544, 1977.

    Google Scholar 

  33. K.R. Chu, A.T. Drobot, H.H. Szu, and P. Sprangle, “Theory and simulation of the gyrotron travelling wave amplifier operating at cyclotron harmonics,”IEEE Trans. Microwave Theory Tech, Vol.MTT-28, pp. 313–317, 1980.

    Google Scholar 

  34. E. Ott and W.M. Manheimer, “Theory of microwave emission by velocity-space instabilities of an intense relativistic electron beam,”IEEE Trans. Plasma Sci., Vol.PS-3, pp. 1–5, 1975.

    Google Scholar 

  35. H.S. Uhm, R.C. Davidson, and K.R. Chu, “Self-consistent theory of cyclotron maser instability for intense hollow electron beams,”Phys. Fluids, Vol.21, pp. 1866–1876, 1978; also pp. 1877–1886, 1978.

    Google Scholar 

  36. C.J. Edgcombe, “The dispersion equation for the gyrotron amplifier,”Int. J. Electron., Vol.48, pp. 471–486, 1980.

    Google Scholar 

  37. J.Y. Choe and S. Ahn, “General mode analysis of a gyrotron dispersion relation,”IEEE Trans. Electron Devices, Vol.ED-28, pp. 94–102, 1980.

    Google Scholar 

  38. A.J. Sangster, “Small signal bandwidth characteristics of a travelling wave gyrotron amplifier,”Int. J. Electron., Vol.51, pp. 583–594, 1981.

    Google Scholar 

  39. G. Mourier, “Gyrotron tubes—A theoretical study,”Arch. Elek. Ubertragung., Vol.34, pp. 473–484, 1980.

    Google Scholar 

  40. G.L. Chen, K.T. Chang, and T.C. Fang, “A wave approach to hollow cylindrical electron cyclotron masers,”Int. J. of Infrared and MM Waves, Vol.1, pp. 247–254, 1980.

    Google Scholar 

  41. S. Liu and Z. Yang, “The kinetic theory of the electron cyclotron resonance maser with space charge effect taken into consideration,”Int. J. Electron., Vol.51, pp. 341–349, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, Y.Y., Barnett, L.R. Theory of a low magnetic field gyrotron (gyromagnetron). Int J Infrared Milli Waves 3, 619–644 (1982). https://doi.org/10.1007/BF01009725

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009725

Keywords

Navigation