Skip to main content
Log in

Effect of water vapor on high-temperature oxidation of FeCr alloys

  • High-Temperature Oxidation-Resistant Alloys / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The suppression of protective chromia scale formation in water vapor containing service environments limits in many cases the upper application temperature of high-Cr martensitic and ferritic steels. The present paper discusses the mechanisms which are responsible for this technologically important effect, using results of oxidation tests with two types of FeCr model alloys in Ar-O2, Ar-O2-H2O, and Ar(-H2)-H2O mixtures. The data shows that in atmospheres with a high ratio of water vapor to oxygen, Cr exhibits a higher tendency to become internally oxidized than in dry Ar-O2, or e.g. air. Contrary to previous studies which showed the presence of water vapor to affect transport processes in the scale and/or to enhance formation of volatile Cr species, the present results thus reveal that the presence of water vapor also affects the transport processes in the alloy, likely by incorporation of hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge, U.K.: Cambridge University Press, 2006).

    Google Scholar 

  2. C.T. Fujii and R.A. Meussner, J. Electrochemical Society, 111(11) (1964), pp. 1215–1221.

    Article  CAS  Google Scholar 

  3. Y. Ikeda and K. Nii, Transactions of National Research Institute for Metals, 26(1) (1984), pp. 52–62.

    Google Scholar 

  4. S.R.J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science, 53(5) (2008), pp. 775–837.

    Article  CAS  Google Scholar 

  5. W.J. Quadakkers et al., Materials at High Temperatures, 22(1/2) (2004), pp. 37–47.

    Google Scholar 

  6. J. Ehlers et al., Corrosion Science, 48 (2006), pp. 3428–3454.

    Article  CAS  Google Scholar 

  7. A. Rahmel and J. Tobolski, Corrosion Science, 5 (1965), pp. 333–346.

    Article  CAS  Google Scholar 

  8. A. Galerie, Y. Wouters, and M. Caillet, Materials Science Forum, 369–372 (2001), pp. 231–238.

    Article  Google Scholar 

  9. H. Asteman et al., Oxidation of Metals, 54(1/2) (2000), pp. 11–26.

    Article  CAS  Google Scholar 

  10. M. Michalik, M. Hänsel, and W.J. Quadakkers, Report Forschungszentrum Jülich, 67 (2007), ISBN 978-3-89336-486-2.

  11. E.J. Opila et al., JOM, 58(1) (2006), pp. 22–28.

    Article  ADS  CAS  Google Scholar 

  12. M. Stanislowski, Report Forschungszentrum Jülich, 54 (2006), ISBN 3-89336-432-2.

  13. D.J. Young and B.A. Pint, Oxidation of Metals, 66(3/4) (2006), pp. 137–153.

    Article  CAS  Google Scholar 

  14. M. Michalik et al., Materials at High Temperatures, 22(3/4) (2005), pp. 213–221.

    Article  CAS  Google Scholar 

  15. E. Essuman et al., Scripta Materialia, 57(9) (2007), pp. 845–848.

    Article  CAS  Google Scholar 

  16. C. Wagner, J. Electrochemical Society, 99(10) (1952), pp. 369–380.

    Article  CAS  Google Scholar 

  17. R.A. Rapp, Acta Metallurgica, 9(8) (1961), pp. 730–741.

    Article  CAS  Google Scholar 

  18. F. Gesmundo and F. Viani, Oxidation of Metals, 25(5) (1986), pp. 269–282.

    Article  CAS  Google Scholar 

  19. E. Essuman et al., Oxidation of Metals, 69(3) (2008), pp. 143–162.

    Article  CAS  Google Scholar 

  20. Z. Yang et al., Solid State Ionics, 176 (2005), pp. 1495–1503.

    Article  CAS  Google Scholar 

  21. K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, Materials at High Temperatures, 18(1) (2001), pp. 51–56.

    Article  CAS  Google Scholar 

  22. Y. Murata et al., Materials Science Forum, 522–523 (2006), pp. 147–154.

    Article  Google Scholar 

  23. K. Nagai et al., Materials Science Forum, 522–523 (2006), pp. 197–204.

    Article  Google Scholar 

  24. N. Otsuka, Y. Shida, and H. Fujikawa, Oxidation of Metals, 32(1) (1989), pp. 13–45.

    Article  CAS  Google Scholar 

  25. M.H.B. Ani et al., Proceedings of the European Corrosion Congress, Eurocorr 2007, (2007), Paper 183.

  26. J. Ågren, Scripta Metallurgica, 20(11) (1986), pp. 1507–1510.

    Article  Google Scholar 

  27. N.K. Das et al., Corrosion Science, 51(4) (2009), pp. 908–913.

    Article  CAS  Google Scholar 

  28. A. Hansson, M. Montgomery, and M. Somers, Oxidation of Metals, 71 (2009), pp. 201–218.

    Article  CAS  Google Scholar 

  29. A. Galerie et al., Materials at High Temperatures, 21(4) (2005), pp. 105–112.

    Article  Google Scholar 

  30. R. Peraldi and B.A. Pint, Oxidation of Metals, 61(5) (2004), pp. 463–483.

    Article  CAS  Google Scholar 

  31. T. Ishitsuka, Y. Inoue, and H. Ogawa, Oxidation of Metals, 61(1) (2004), pp. 125–142.

    Article  CAS  Google Scholar 

  32. L. Tan et al., Corrosion Science, 50(7) (2008), pp. 2040–2046.

    Article  CAS  Google Scholar 

  33. J. Froitzheim et al., J. Power Sources, 178 (2008), pp. 163–173.

    Article  CAS  Google Scholar 

  34. B.A. Pint and I.G. Wright, Oxidation of Metals, 63(3) (2005), pp. 193–213.

    Article  CAS  Google Scholar 

  35. K. Kimura et al., 2nd ECCC Creep Conference, ed. I.A. Shibli and S.R. Holdsworth (Lancaster, PA: DEStech Publications, Inc., 2009), p. 935.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Quadakkers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quadakkers, W.J., Żurek, J. & Hänsel, M. Effect of water vapor on high-temperature oxidation of FeCr alloys. JOM 61, 44–50 (2009). https://doi.org/10.1007/s11837-009-0102-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0102-y

Keywords

Navigation