Skip to main content
Log in

Thermophysical Properties of Ag and Ag–Cu Liquid Alloys at 1098K to 1573K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The surface tension and density of liquid Ag and Ag–Cu alloys were measured with the sessile drop method. The sessile drop tests were carried out at temperatures from 1098K to 1573 K, on cooling (temperature decreasing stepwise) under a protective atmosphere of high purity Ar (6N). The density of liquid Ag and Ag–Cu alloys decreases linearly with increasing temperature, and an increase in concentration of copper results in a lower density. The surface tension dependence on temperature can be described by linear equations, and the surface tension increases with increasing Cu content. The results of the measurements show good agreement with existing literature data and with thermodynamic calculations made using the Butler equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durov O.V., Krasovskiy V.P.: Mater. Sci. Eng. A 495, 164 (2008)

    Article  Google Scholar 

  2. Lopez-Cuevas J., Jones H., Atkinson H.V.: Mater. Sci. Eng. A 266, 161 (1999)

    Article  Google Scholar 

  3. Kozlova O., Voytovych R., Devismes M.F., Eustathopoulos N.: Mater. Sci. Eng. A 495, 96 (2008)

    Article  Google Scholar 

  4. Andrieux J., Dezellus O., Bosselet F., Viala J.C.: J. Phase Equilib. Diff. 30, 40 (2009)

    Article  Google Scholar 

  5. Krause W., Saurewald F., Anorg Z.: Allg. Chem. 181, 347 (1929)

    Article  Google Scholar 

  6. Sebo P., Gallois B., Lupis C.H.P.: Metall. Trans. B 8, 691 (1977)

    Google Scholar 

  7. Brillo J., Egry I., Ho I.: Int. J. Thermophys. 27, 494 (2006)

    Article  Google Scholar 

  8. Kucharski M., Fima P., Skrzyniarz P., Przebinda-Stefanova V.: Arch. Metall. Mater. 51, 389 (2006)

    Google Scholar 

  9. Krause W., Saurewald F., Michalke M., Anorg Z.: Allg. Chem. 181, 353 (1929)

    Article  Google Scholar 

  10. Bricard A., Eustathopulos N., Joud J.C., Desre P.: CR Acad. Sci. 276, 1613 (1973)

    Google Scholar 

  11. Lee J., Tanaka T., Asano Y, Hara S.: Mater. Trans. 45, 2719 (2004)

    Article  Google Scholar 

  12. Novakovic R., Ricci E., Giuranno D., Passerone A.: Surf. Sci. 576, 175 (2005)

    Article  ADS  Google Scholar 

  13. Sobczak N., Nowak R., Radziwill W., Budzioch J., Glenz A.: Mater. Sci. Eng. A 495, 43 (2008)

    Article  Google Scholar 

  14. Fima P., Nowak R., Sobczak N.: J. Mater. Sci. 45, 2009 (2010)

    Article  ADS  Google Scholar 

  15. I. Egry, D. Holland-Moritz, R. Novakovic, E. Ricci, R. Wunderlich, N. Sobczak, Int. J. Thermophys. (2010). doi:10.1007/s10765-010-0704-1

  16. Liggeri L., Passerone A.: High Technol. 7, 82 (1989)

    Google Scholar 

  17. M. Vivani, ICFAM-CNR Tech. Report, CNR, Genoa (1999)

  18. Gebhardt E., Dorner S.: Z. Metallkd. 42, 353 (1951)

    Google Scholar 

  19. Gebhardt E., Becker M., Tragner E.: Z. Metallkd. 44, 379 (1953)

    Google Scholar 

  20. Lauermann L., Metzger G.: Z. Phys. Chem. 216, 37 (1960)

    Google Scholar 

  21. Kirshenbaum A.D., Cahill J.A., Grosse A.V.: J. Inorg. Nucl. Chem. 24, 333 (1962)

    Article  Google Scholar 

  22. Lucas L.D.: Mem. Scientif. Rev. Metall. 61, 1 (1964)

    Google Scholar 

  23. Nagamori M.: Trans. Metall. Soc. AIME 245, 1897 (1969)

    Google Scholar 

  24. Bernard G., Lupis C.H.P.: Metall. Trans. 2, 555 (1971)

    Article  Google Scholar 

  25. Lucas L.D.: Mem. Etud. Sci. Rev. Met. 69, 39 (1972)

    Google Scholar 

  26. Martin-Garin L., Gomez M., Bedon P., Desre P.: J. Less-common Met. 41, 65 (1975)

    Article  Google Scholar 

  27. Nogi K., Oishi K., Ogino K.: Mater. Trans. JIM 30, 137 (1989)

    Google Scholar 

  28. Gąsior W., Pstruś J., Moser Z., Krzyżak A., Fitzner K.: J. Phase Equilib. 24, 40 (2003)

    Google Scholar 

  29. Kucharski M., Fima P.: Monatsh. Chem. 136, 1841 (2005)

    Article  Google Scholar 

  30. Keene B.J.: Int. Mater. Rev. 38, 157 (1993)

    Google Scholar 

  31. Mills K.C., Su Y.C.: Int. Mater. Rev. 51, 329 (2006)

    Article  ADS  Google Scholar 

  32. Ozawa S., Morohoshi K., Hibiya T., Fukuyama H.: J. Appl. Phys. 107, 014910-1 (2010)

    Article  ADS  Google Scholar 

  33. Morita S., Kasama A.: J. Jpn. Inst. Met. 8, 787 (1976)

    Google Scholar 

  34. Sangiorgi R., Muolo M.L., Passerone A.: Acta Metall. 30, 1597 (1982)

    Article  Google Scholar 

  35. Butler J.A.V.: Proc. R. Soc. A 135, 348 (1935)

    Article  ADS  Google Scholar 

  36. Redlich O., Kister A.T.: Ind. Eng. Chem. 40, 345 (1948)

    Article  Google Scholar 

  37. Tanaka T., Hack K., Iida T., Hara S.: Z. Metallkd. 87, 380 (1996)

    Google Scholar 

  38. A.T. Dinsdale, A. Watson, A. Kroupa, A. Zemanowa, J. Vrestal, J. Vidal, COST 531 v3.0 Thermodynamic Database (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Fima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fima, P., Sobczak, N. Thermophysical Properties of Ag and Ag–Cu Liquid Alloys at 1098K to 1573K. Int J Thermophys 31, 1165–1174 (2010). https://doi.org/10.1007/s10765-010-0798-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0798-5

Keywords

Navigation