Skip to main content
Log in

Theoretical Calculation of the Low-Density Transport Properties of Monatomic Silver Vapor

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Calculations of low-density transport property collision integrals are used to obtain the high-temperature transport properties of silver atoms as a function of temperature. The collision integrals depend on the two-body interaction potentials between silver atoms in various electronic states. Contributions are included from the ground \(X^{1}\Sigma_{\rm g}^{+}\) and excited \(^{3}\Sigma _{\rm u}^{+}\) molecular electronic states of the silver dimer that dissociate to two ground-state silver atoms and from the excited \(A^{1}\Sigma_{\rm u}^{+}\) molecular state that dissociates to a ground state and an excited state silver atom. Spectroscopic constants are available for these three electronic states, and these spectroscopic constants have been used to determine the Hulburt–Hirschfelder (HH) potentials for these three states. The HH potential is perhaps the best general-purpose potential for representing atom–atom interactions. This potential depends only on the spectroscopic constants, and can be used to calculate the viscosity and diffusion collision integrals for the three molecular electronic states. The collision integrals are then degeneracy averaged over the three states. The heat capacity of silver atoms is also calculated at high temperatures. These results provide the information required to obtain the thermal conductivity, viscosity, and self-diffusion coefficients of silver atoms over a wide temperature range from the boiling point of silver to temperatures at which ionization becomes important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero R., Mazuelos A., Palencia I., Carranza F. (2003). Hydrometallurgy 70: 205

    Article  Google Scholar 

  2. Qu Z., Huang W., Cheng M., Bao X. (2005). J. Phys. Chem. B 109: 15842

    Article  Google Scholar 

  3. Sayhun M.R.V. (1978). Phot. Sci. Eng. 22: 317

    Google Scholar 

  4. Biolsi, M.L., Biolsi, L., Holland, P.M.: Paper #368. 228th Nat. Meeting, American Chemical Society, Philadelphia (2004)

  5. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids, Chap. 8. Wiley, New York (1954)

  6. Mason E.A., Monchick L. (1962). J. Chem. Phys. 36: 1622

    Article  ADS  Google Scholar 

  7. Vanderslice J.T., Weissman J.T.S., Mason E.A., Fallon R.J. (1962). Phys. Fluids 5: 155

    Article  ADS  Google Scholar 

  8. Hulburt H.M., Hirschfelder J.O. (1941). J. Chem. Phys. 9: 61

    Article  ADS  Google Scholar 

  9. Hulburt H.M., Hirschfelder J.O. (1961). J. Chem. Phys. 35: 1901

    Article  ADS  Google Scholar 

  10. Steele D., Lippincott E.R., Vanderslice J.T. (1962). Rev. Mod. Phys. 34: 239

    Article  ADS  Google Scholar 

  11. Vanderslice J.T., Mason E.A., Maisch W.G. (1960). J. Chem. Phys. 32: 515

    Article  ADS  Google Scholar 

  12. Krupenie P.H. (1972). J. Phys. Chem. Ref. Data, 1: 423

    Article  Google Scholar 

  13. Lie G.C., Clementi E. (1974). J. Chem. Phys. 60: 1288

    Article  ADS  Google Scholar 

  14. Das G., Wahl A.C. (1966). J. Chem. Phys. 44: 87

    Article  ADS  Google Scholar 

  15. Lofthus A., Krupenie P.H. (1977). J. Phys. Chem. Ref. Data 6: 113

    Article  ADS  Google Scholar 

  16. Vanderslice J.T., Mason E.A., Maisch W.G., Lippincott E.R. (1960). J. Chem. Phys. 33: 614

    Article  ADS  Google Scholar 

  17. L. Biolsi, P.M. Holland, in Progress in Astronautics and Aeronautics: Thermophysical Aspects of Re-entry Flows, vol. 103, ed. by J.N. Moss, C.D. Scott (AIAA, New York, 1986), pp. 261–278

  18. Biolsi L., Rainwater J.C., Holland P.M. (1982). J. Chem. Phys. 77: 448

    Article  ADS  Google Scholar 

  19. Herzberg G. (1950). Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules. Van Nostrand, New York, 425–430

    Google Scholar 

  20. Mulliken R.S. (1937). J. Phys. Chem. 41: 5

    Article  Google Scholar 

  21. Brown J.C., Matsen F.A. (1973). Adv. Chem. Phys. 23: 161

    Article  Google Scholar 

  22. Fougere P.F., Nesbet R.K. (1966). J. Chem. Phys. 44: 285

    Article  ADS  Google Scholar 

  23. Huber K.P., Herzberg G. (1979). Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules. Van Nostrand Reinhold, New York, 8

    Google Scholar 

  24. Simard B., Hackett P.A. (1991). Chem. Phys. Lett. 186: 415

    Article  ADS  Google Scholar 

  25. Lombardi J.R., Davis B. (2002). Chem. Rev. 102: 2431

    Article  Google Scholar 

  26. Zhang H., Balasubramanian K. (1993). J. Chem. Phys. 98: 7092

    Article  ADS  Google Scholar 

  27. Levine I.N. (1966). J. Chem. Phys. 45: 827

    Article  ADS  Google Scholar 

  28. Woolley H.W. (1962). J. Chem. Phys. 37: 1307

    Article  ADS  Google Scholar 

  29. Varshni Y.P., Shukla R.C. (1964). J. Chem. Phys. 40: 250

    Article  ADS  Google Scholar 

  30. R.C. Weast (ed.), Handbook of Physics and Chemistry, 51st edn. (The Chemical Rubber Company, Cleveland, 1970), p. D-142

    Google Scholar 

  31. M.W. Chase Jr. (ed.), NIST-JANAF Thermochemical Tables, 4th edn., Part 1 (NIST, Washington, D.C, 1998)

    Google Scholar 

  32. Moore C.E. (1971). Atomic Energy Levels, Vol. III. NSRDS-NBS 35, Washington, DC, 48–49

    Google Scholar 

  33. http://physics.nist.gov/PhysRefData/Handbook/Tables/silvertable1.htm

  34. Downey, J.R. Jr.: The Dow Chemical Company, AFOSR-TR-0960, Contract #F44620-71-1-0048 (1978)

  35. Bethe, H.: Office of Scientific Research and Development Report #369 (1942)

  36. I. Barin (ed.), Thermochemical Data of Pure Substances, Part I (VCH Pubs., Weinham, Germany, 1989), p. 2

    Google Scholar 

  37. Rainwater J.C., Holland P.M., Biolsi L. (1982). J. Chem. Phys. 77: 434

    Article  ADS  Google Scholar 

  38. Mason E.A., Vanderslice J.T., Yos J.M. (1959). Phys. Fluids 6: 688

    Article  MathSciNet  ADS  Google Scholar 

  39. Beutel V., Kuhn M., Demtroder W. (1992). J. Mol. Spectros. 155: 343

    Article  ADS  Google Scholar 

  40. Biolsi L., Holland P.M. (2004). Int. J. Thermophys. 25: 1063

    Article  Google Scholar 

  41. Nyeland C., Mason E.A. (1967). Phys. Fluids 10: 985

    Article  ADS  Google Scholar 

  42. Woolley H.W. (1953). J. Chem. Phys. 21: 236

    Article  ADS  Google Scholar 

  43. McQuarrie, D.A.: Statistical Thermodynamics, Chaps. 2, 6 . Harper & Row, New York (1973)

  44. Krupenie P.H., Mason E.A. (1963). J. Chem. Phys. 99: 2399

    Article  ADS  Google Scholar 

  45. Holland P.M., Biolsi L. (1986). J. Chem. Phys. 85: 4011

    Article  ADS  Google Scholar 

  46. Holland P.M., Biolsi L. (1987). J. Chem. Phys. 87: 1261

    Article  ADS  Google Scholar 

  47. Vargaftik N.V., Yargin V.S., Voshchinin A.A., Dolgov V.I., Kapitonov V.M., Sidorov N.I., Tarlakov Y.V. (1984). High Temp. High Press. 16: 57

    Google Scholar 

  48. Stepanko F., Sidorov N.I., Tarlakov Y.V., Yargin V.S. (1986). Int. J. Thermophys. 7: 829

    Article  Google Scholar 

  49. Timrot D.L., Varava A.N. (1977). High Temp. 15: 634

    Google Scholar 

  50. Vargaftik N.V., Voschchinin A.A. (1967). High Temp. 5: 715

    Google Scholar 

  51. Timrot D.L., Makhrov V.V., Sviridenko V.I. (1976). High Temp. 14: 58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Biolsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biolsi, L., Holland, P.M. Theoretical Calculation of the Low-Density Transport Properties of Monatomic Silver Vapor. Int J Thermophys 28, 835–845 (2007). https://doi.org/10.1007/s10765-007-0217-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0217-8

Keywords

Navigation