Skip to main content
Log in

Thermodynamic properties of nitrogen molecules at high temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Calculations of the second virial coefficients and their derivatives for the Hulburt-Hirschfelder (HH) and other accurate interaction potentials are used to determine the thermodynamic properties of nitrogen at high temperatures. Unlike the usual methods employing partition functions, which are most accurate at low temperatures where the energy levels are precisely known, the virial coefficient method depends on integrating over potential energy functions which provide a useful description of energies even near the top of the potential well, a region where the vibrational-rotational energy levels are not readily accessible. This makes this method particularly useful for predicting high-temperature properties outside the range of laboratory measurements and beyond the useful limits of the partition function approach. In the present work, we use the virial coefficient method to predict the heat capacities and enthalpies of nitrogen up to 25,000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Wallace and P. V. Hobbs, Atmospheric Science (Academic Press, New York, 1977).

    Google Scholar 

  2. J. N. Moss, J. J. Jones, and A. L. Simmonds, in Progress in Astronautics and Aeronautics, Vol. 64, R. Viskanta, ed. (AIAA, New York, 1979), p. 22.

    Google Scholar 

  3. L. Biolsi, J. Geophys. Res. 83:2476 (1978).

    Google Scholar 

  4. L. Biolsi and L. R. Wallace, in Progress in Astronautics and Aeronautics, Vol. 64, R. Viskanta, ed. (AIAA, New York, 1979), p. 65.

    Google Scholar 

  5. L. Biolsi and K. J. Biolsi, J. Geophys. Res. 84:5311 (1979).

    Google Scholar 

  6. L. Biolsi, AIAA J. 18:596 (1980).

    Google Scholar 

  7. L. Biolsi, J. T. Fenton, and B. Owenson, in Progress in Astronautics and Aeronautics, Vol. 82, T. E. Horton, ed. (AIAA, New York, 1982), p. 17.

    Google Scholar 

  8. L. Biolsi, J. C. Rainwater, and P. M. Holland, J. Chem. Phys. 77:448 (1982).

    Google Scholar 

  9. L. Biolsi, J. Geophys. Res. 83:1125 (1978).

    Google Scholar 

  10. B. Flori and L. Biolsi, in Progress in Astronautics and Aeronautics, Vol. 82, T. E. Horton, ed. (AIAA, New York, 1982), p. 37.

    Google Scholar 

  11. J. C. Rainwater, L. Biolsi, K. J. Biolsi, and P. M. Holland, J. Chem. Phys. 79:1462 (1983).

    Google Scholar 

  12. L. Biolsi and P. M. Holland, in Progress in Astronautics and Aeronautics, Vol. 103, J. N. Moss and C. D. Scott, eds. (AIAA, New York, 1986), p. 261.

    Google Scholar 

  13. J. T. Vanderslice, S. Weissman, E. A. Mason, and R. J. Fallon, Phys. Fluids 5:155 (1962).

    Google Scholar 

  14. N. Davidson, Statistical Mechanics (McGraw-Hill, New York, 1962), Chaps. 7, 8, 15.

    Google Scholar 

  15. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

    Google Scholar 

  16. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).

    Google Scholar 

  17. R. E. Sonntag and G. J. Van Wylen, Fundamentals of Statistical Thermodynamics (Wiley & Sons, New York, 1968).

    Google Scholar 

  18. D. R. Stull and H. Prophet (eds.), JANAF Thermochemical Tables, NSRDS-NBS37 (June, 1971).

  19. A. Balakrishnan, Paper 86-1277, AIAA/ASME 4th Joint Thermophys. Heat Transfer Conf., Boston (June 1986).

  20. C. W. Beckett and L. Haar, in Proceedings of the Joint Conference on Thermodynamic and Transport Properties of Fluids, O. A. Saunders, ed. (Inst. Mech. Eng., London, 1958), p. 27.

    Google Scholar 

  21. O. Sinanoglu and K. S. Pitzer, J. Chem. Phys. 31: 960 (1959).

    Google Scholar 

  22. G. Baumann, Z. Phys. Chem. 14:113 (1958).

    Google Scholar 

  23. W. G. Browne, Adv. Aero. Phys. Tech. Memo No. 8 (GE Company, Valley Forge, Pa., May 1962).

    Google Scholar 

  24. C. W. Beckett, M. S. Green, and H. W. Wooley, in Annual Reviews of Physical Chemistry, Vol. 7, H. Eyring, C. J. Christensen, and H. S. Johnston, eds. (Annual Reviews, Palo Alto, Calif., 1956), p. 287.

    Google Scholar 

  25. F. H. Mies and P. S. Julienne, J. Chem. Phys. 77:6162 (1982).

    Google Scholar 

  26. H. W. Wooley, J. Chem. Phys. 21:236 (1953).

    Google Scholar 

  27. K. S. Pitzer, Quantum Chemistry (Prentice-Hall, New York, 1953), Chap. 11.

    Google Scholar 

  28. T. L. Hill, An Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960), Chap. 15.

    Google Scholar 

  29. O. K. Rice, Statistical Mechanics, Thermodynamics, and Kinetics (Freeman, San Francisco, 1967), Chap. 8.

    Google Scholar 

  30. J. C. Rainwater, P. M. Holland, and L. Biolsi, in Progress in Astronautics and Aeronautics, Vol. 82, T. E. Horton, ed. (AIAA, New York, 1982), p. 3.

    Google Scholar 

  31. J. C. Rainwater, P. M. Holland, and L. Biolsi, J. Chem. Phys. 77: 434 (1982).

    Google Scholar 

  32. D. Steele, E. R. Lippincott, and J. T. Vanderslice, Rev. Mod. Phys. 34: 239 (1962).

    Google Scholar 

  33. P. H. Krupenie, J. Phys. Chem. Ref. Data 1: 423 (1972).

    Google Scholar 

  34. P. M. Holland, L. Biolsi, and J. C. Rainwater, Chem. Phys. 99:383 (1985).

    Google Scholar 

  35. P. M. Holland, L. Biolsi, and J. C. Rainwater, J. Chem. Phys. 85:4011 (1986).

    Google Scholar 

  36. P. M. Holland and L. Biolsi, J. Chem. Phys. 87:1261 (1987).

    Google Scholar 

  37. P. M. Holland and L. Biolsi, J. Chem. Phys. 89:3203 (1988).

    Google Scholar 

  38. A. Lofthus and P. H. Krupenie, J. Phys. Chem. Ref. Data 6:113 (1977).

    Google Scholar 

  39. D. Cerny, F. Roux, C. Effantin, and J. D'Incan, J. Mol. Spec. 81:216 (1980).

    Google Scholar 

  40. P. K. Carroll, C. C. Collins, and J. T. Murnaghan, J. Phys. B 5:1634 (1972).

    Google Scholar 

  41. J. W. Ledbetter, Jr., and K. Dressler, J. Mol. Spec. 63:370 (1976).

    Google Scholar 

  42. R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner, QUAD-PACK: A Subroutine Package for Automatic Integration (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  43. P. M. Holland, J. F. Ely, and H. J. M. Hanley, J. Res. Natl. Bur. Stand. 82:123 (1977).

    Google Scholar 

  44. J. F. Ely and H. J. M. Hanley, Mol. Phys. 30:565 (1975).

    Google Scholar 

  45. P. Clancy, D. W. Gough, G. P. Matthews, E. B. Smith, and G. C. Maitland, Mol. Phys. 30:1397 (1975).

    Google Scholar 

  46. A. Boushehri, L. A. Viehland, and E. A. Mason, Physica 91A:434 (1978).

    Google Scholar 

  47. J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, J. Phys. Chem. Ref. Data 13:229 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phair, R., Biolsi, L. & Holland, P.M. Thermodynamic properties of nitrogen molecules at high temperatures. Int J Thermophys 11, 201–211 (1990). https://doi.org/10.1007/BF00503871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503871

Key words

Navigation