Skip to main content
Log in

Application of a Verification, Validation and Uncertainty Quantification Framework to a Turbulent Buoyant Helium Plume

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A framework for verification and validation/uncertainty quantification of large-scale, highly coupled, complex processes is presented. Steps in the framework include code and solution verification, development of an input/uncertainty map, definition of evaluation criteria, development of a surrogate model, performance of a consistency analysis (a mathematical statement limiting error), and the feed forward and feedback of information gain from the analysis. This framework is applied to a turbulent, buoyant, 1 m diameter helium plume. Experimental measurements are obtained from Sandia National Laboratory while the helium plume simulations are performed using Large Eddy Simulation. Both parameter and experimental uncertainty associated with the helium plume are reduced by requiring consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knupp, P., Salari, K.: Verification of computer codes in computational science and engineering. Sci-Tech News 57(2), 41 (2003)

    Google Scholar 

  2. Roache, P.J.: Verification and validation in computational science and engineering. Hermosa Publishers, Albuquerque (1998)

    Google Scholar 

  3. Logan, R.W., Nitta, C.K.: Comparing 10 methods for solution verification, and linking to model validation. Lawrence Livermore National Laboratory; UCRL-TR-210837 (2005)

  4. Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J.: A framework for validation of computer models. Technometrics 49, 138–154 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bayarri, M.J., Berger, J.O., Higdon, D., Kennedy, M.C., Kottas, A., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J.C., Lin, C.H., Tui, J.: A framework for validation of computer models. NISS Technical Report 128 (2002)

  6. Feeley, R, Seiler, P, Packard, A, Frenklach, M.: Consistency of a reaction dataset. J. Phys. Chem. A 108, 9573–9583 (2004)

    Article  Google Scholar 

  7. Russi, T, Packard, A, Frenklach, M.: Uncertainty quantification: Making predictions of complex reaction systems reliable. Chem. Phys. Lett. 499(1–3), 1–8 (2010)

    Article  Google Scholar 

  8. Oberkampf, WL, Barone, MF: Measures of agreement between computation and experiment: Validation metrics. Sandia National Laboratory (2005)

  9. Naylor, T., Finger, J.M., McKenney, J.L., Schrank, W.E., Holt, C.C.: Verification of computer simulation models. Manag. Sci. 14(2), B92–B106 (1967)

  10. Bandemer, H.W.: Mathematics of uncertainty. Springer (2006)

  11. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Morgan, M.G., Henrion, M.: Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis, 1 st Ed. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  13. Cullen, A.C., Frey, H.C.: Probabilistic techniques in exposure assessment: A handbook for dealing with variability and uncertainty in models and inputs. Plenum Press, New York (1999)

    Google Scholar 

  14. Vose, D.: Risk analysis: A quantitative guide, 3 rd Ed. Wiley, New York (2008)

    Google Scholar 

  15. Haimes, Y.Y.: Risk Modeling, assessment, and management, 3 rd Ed. John Wiley, New York (2009)

    Google Scholar 

  16. Kiureghiana, A.D., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  17. Cavallo, P.A, Sinha, N.: Error quantification for computational aerodynamics using an error transport equation. J. Aircr. 44(6), 1954–1963 (2007)

    Article  Google Scholar 

  18. Shih, T.I.-P., Williams, B.R.: Development and evaluation of an a posteriori method for estimating and correcting grid-induced errors in solutions of the Navier-Stokes equations, pp 2009–1499. AIAA Paper (2009)

  19. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis 142(1–2), 1–88 (1997)

  20. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates, Part 2: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33, 1365–82 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Coleman, H.W., Stern, F.: Uncertainties and CFD code validation. J. Fluids Eng. 119, 795–803 (1997)

    Article  Google Scholar 

  22. Stern, F., Wilson, R.V., Coleman, H.W., Paterson, E.G.: Comprehensive approach to verification and validation of CFD simulations-Part 1: Methodology and procedures. J. Fluids Eng. 123(4), 793–802 (2001)

    Article  Google Scholar 

  23. Roy, C.J., Oberkampf, W.L.: A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 200, 2131–2144

  24. Ferson, S., Oberkampf, W.L., Ginzburg, L.: Model validation and predictive capability for the thermal challenge problem. Comput. Methods Appl. Mech. Eng. 197, 2408–2430 (2008)

    Article  MATH  Google Scholar 

  25. Ferson, S., Ginzburg, L.R.: Different methods are needed to propagate ignorance and variability. Reliab. Eng. Syst. Saf. 54, 133–144 (1996)

    Article  Google Scholar 

  26. Ferson, S., Hajagos, J.G.: Arithmetic with uncertain numbers: rigorous and (often) best possible answers. Reliab. Eng. Syst. Saf. 85, 135–152 (2004)

    Article  Google Scholar 

  27. Oberkampf, W.L., Trucano, T.G.: Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences 38(3), 209–272 (2002)

    Article  Google Scholar 

  28. Standard for verification and validation in computational fluid dynamics and heat transfer, American Society of Mechanical Engineers, V&V 20 (2009)

  29. Rubinstein, R.Y.: Simulations and Monte-Carlo method. Wiley Series in Probability and Mathematical Statistics. Wiley (1981)

  30. Romero, V.J.: Elements of a pragmatic approach for sealing with bias and uncertainty in experiments through predictions. Sandia National Laboratory. Report SAND2011-7342 (2011)

  31. Avramova, M.N, Ivanov, K.N.: Verification, validation and uncertainty quantification in multi-physics modeling for nuclear reactor design and safety analysis. Prog. Nucl. Energy 52, 601–614 (2010)

    Article  Google Scholar 

  32. Knio, O.M., Le Maıtre, O.P.: Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 38(9), 616–40 (2006)

    Article  MATH  Google Scholar 

  33. Najm, H.N.: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Ann. Rev. Fluid Mech. 41, 35–52 (2009)

    Article  MathSciNet  Google Scholar 

  34. Roy, C.J.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205, 131–156 (2005)

    Article  MATH  Google Scholar 

  35. Abanto, J., Pelletiery, D., Garonz, A., Trepanier, J.Y., Reggio, M.: Verification of some commercial CFD codes on atypical CFD problems. 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno NV (2005)

  36. Shunn, L., Ham, F.: Method of manufactured solutions applied to variable-density flow solvers. Annual Research Briefs, Center for Turbulence Research (2007)

  37. http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm. 15 th December 2014

  38. Box, G., Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 13(1), 1–45

  39. Waston, D.F.: Contouring: A guide to the analysis and display of spatial data, pp 130–36. Pergaman Press, New York (1992)

    Google Scholar 

  40. Sloan, S.W.: A fast algorithm for generating constrained Delaunay triangulations. Comput. Struct. 47(3), 441–50 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Feeley, R., Frenklach, M., Onsum, M., Russi, T., Arkin, A., Packard, A.: Model discrimination using data collaboration. 6803–13 110 (2006)

  42. Frenklach, M., Packard, A., Seiler, P., Feeley, R.: Collaborative data processing in developing predictive models of complex reaction systems. 57–66 36(1) (2004)

  43. O’Hern, T.J., Weckman, E.J., Gerhart, A.L., Tieszen, S.R., Schefer, R.W.: Experimental study of a turbulent buoyant helium plume. J. Fluid Mech. 544, 143–171 (2005)

    Article  MATH  Google Scholar 

  44. Blinov, V.I., Khudyakov, G.N.: Diffusion burning of liquids. US Army Engineering Research and Development Laboratories, Fort Belvoir, VA, Rep. AERDL-T-1490-a-c. ASTIA, AD 296762 (1961)

  45. Nicoud, F., Ducros, F.: Subgrid-scale stress modeling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 183–200, 62 (1999)

    Google Scholar 

  46. Hinze, J.O.: Turbulence. McGraw-Hill Publishing Co, New York (1975)

    Google Scholar 

  47. http://chpc.utah.edu/docs/manuals/hardware/#ember. 17 th August 2014

  48. Cetegen, B.M., Kasper, K.D.: Experiments on the oscillatory behavior of buoyant plumes of helium and helium-air mixtures. Phys. Fluids 8, 2974–2984 (1996)

    Article  Google Scholar 

  49. Cetegen, B.M., Ahmed, T.A.: Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93, 157–184 (1993)

    Article  Google Scholar 

  50. Maragkos, G., Rauwoens, P., Wang, Y., Merci, B.: Large eddy simulation of the flow in the near-field region of a turbulent buoyant helium plume. Flow, Turbulence and Combustion 90(3), 511–543 (2013)

    Article  Google Scholar 

  51. Xin, Y., Gore, J.P.: Two-dimensional soot distributions in buoyant turbulent fires. Proc. Combust. Inst. 30, 719–26 (2005)

    Article  Google Scholar 

  52. Yimer, I., Campbell, I., Jiang, L.-Y.: Estimation of the turbulent Schmidt number from experimental profiles of axial velocity and concentration for high-Reynolds-number jet flows. Canadian Aeronautics and Space Journal 48(3), 195–200 (2002)

    Article  Google Scholar 

  53. Wen, J.X., Kang, K., Donchev, T., Karwatzki, J.M.: Validation of FDS for the prediction of medium-scale pool fires. Fire Safety Journal 42, 127–38 (2007)

    Article  Google Scholar 

  54. Chung, W., Devaud, C.B.: Buoyancy-corrected k–epsilon models and large eddy simulation applied to a large axisymmetric helium plume. Int. J. Numer. Methods Fluids 58, 57–89 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchal Jatale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatale, A., Smith, P.J., Thornock, J.N. et al. Application of a Verification, Validation and Uncertainty Quantification Framework to a Turbulent Buoyant Helium Plume. Flow Turbulence Combust 95, 143–168 (2015). https://doi.org/10.1007/s10494-015-9612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9612-6

Keywords

Navigation