Skip to main content
Log in

Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

It is highly attractive but still remains a great challenge to develop an efficient electrocatalyst for oxygen evolution reaction under nearly neutral conditions. In this work, we report the transformation of Ni3S2 nanowire array on nickel foam into the amorphous nickel carbonate nanowire array on nickel foam (NiCO3/NF). The resulting NiCO3/NF shows high electrocatalytic activity towards water oxidation and affords current density of 50 mA∙cm‒2 at overpotential of 395 mV in 1.0 mol∙L‒1 KHCO3. Moreover, this NiCO3/NF is also durable with a long-term electrochemical durability of 60 h. This catalyst electrode achieves a high turnover frequency of 0.21 mol O2∙s‒1 at the overpotential of 500 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical Reviews, 2010, 110(11): 6474–6502

    Article  CAS  PubMed  Google Scholar 

  2. Service R F. Hydrogen cars: Fad or the future? Science, 2009, 324 (5932): 1257–1259

    Article  CAS  PubMed  Google Scholar 

  3. Lin F, Boettcher S W. Adaptive semiconductor/eElectrocatalyst junctions in water-splitting photoanodes. Nature Materials, 2014, 13 (1): 81–86

    Article  CAS  PubMed  Google Scholar 

  4. Walter MG, Warren E L, Mckone J R, Boettcher SW, Mi Q, Santori E S, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

    Article  CAS  PubMed  Google Scholar 

  5. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180

    Article  CAS  PubMed  Google Scholar 

  6. Lu X, Gu L, Wang J, Wu J, Liao P, Li G. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Advanced Materials, 2017, 29(3): 1604437

    Article  CAS  Google Scholar 

  7. Feng J, Ye S, Xu H, Tong Y, Li G. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703

    Article  CAS  PubMed  Google Scholar 

  8. Feng J, Xu H, Dong Y, Ye S, Tong Y, Li G. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698

    Article  CAS  PubMed  Google Scholar 

  9. Hong W, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 2015, 8(5): 1404–1427

    Article  CAS  Google Scholar 

  10. Yin Q, Tan J M, Besson C, Geletii Y V, Musaev D G, Kuznetsov A E, Luo Z, Hardcastle K I, Hill C L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science, 2010, 328(5976): 342–345

    Article  CAS  PubMed  Google Scholar 

  11. Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383–1385

    Article  CAS  PubMed  Google Scholar 

  12. Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials, 2016, 28(42): 9266–9291

    Article  CAS  PubMed  Google Scholar 

  13. Zhong H, Wang J, Meng F, Zhang X. In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes. Angewandte Chemie, 2016, 128(20): 10091–10095

    Article  Google Scholar 

  14. Zhong H, Li K, Zhang Q, Wang J, Meng F, Wu Z, Yan J, Zhang X. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Materials, 2016, 8(132): e308

    Article  CAS  Google Scholar 

  15. Le Goff A, Artero V, Jousselme B, Tran P D, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M. From hydrogenases to noble metalfree catalytic nanomaterials for H2 production and uptake. Science, 2009, 326(5958): 1384–1387

    Article  CAS  PubMed  Google Scholar 

  16. Leroy R L. Industrial water electrolysis: Present and future. International Journal of Hydrogen Energy, 1983, 8(83): 401417

    Google Scholar 

  17. Liang H, Meng F, Cabán-Acevedo M, Li L, Forticaux A, Xiu L, Wang Z, Jin S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Letters, 2015, 15(2): 1421–1427

    Article  CAS  PubMed  Google Scholar 

  18. Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072–1075

    Article  CAS  PubMed  Google Scholar 

  19. McAlpin J G, Surendranath Y, Dinca M, Stich T A, Stoian S A, Casey W H, Nocera D G, Britt R D. EPR evidence for Co(IV) species produced during water oxidation at neutral pH. Journal of the American Chemical Society, 2010, 132(20): 6882–6883

    Article  CAS  PubMed  Google Scholar 

  20. Esswein A J, Surendranath Y, Reece S Y, Nocera D G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutrual and natural waters. Energy & Environmental Science, 2011, 4(2): 499–504

    Article  CAS  Google Scholar 

  21. Wang W, Liu D, Hao S, Qu F, Ma Y, Du G, Asiri A M, Yao Y, Sun X. High-efficiency and durable water oxidation under mild pH conditions: An iron phosphate-borate nanosheet array as a nonnoble-metal catalyst electrode. Inorganic Chemistry, 2017, 56(6): 3131–3135

    Article  CAS  PubMed  Google Scholar 

  22. Surendranath Y, Kanan M W, Nocera D G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. Journal of the American Chemical Society, 2010, 132 (46): 16501–16509

    Article  CAS  PubMed  Google Scholar 

  23. Kanan M W, Yano J, Surendranath Y, Dincă M, Yachandra V K, Nocera D G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-Ray spectroscopy. Journal of the American Chemical Society, 2010, 132(46): 13692–13701

    Article  CAS  PubMed  Google Scholar 

  24. Smith A M, Trotochaud L, Burke M S, Boettcher S W. Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chemical Communications (Cambridge), 2015, 51(25): 5261–5263

    Article  CAS  Google Scholar 

  25. Dincă M, Surendranath Y, Nocera D G. Nickel-borate oxygenevolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10337–10341

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bediako D K, Costentin C, Jones E C, Nocera D G, Savéant J M. Proton-electron transport and transfer in electrocatalytic films. Application to a cobalt-based O2-evolution catalyst. Journal of the American Chemical Society, 2013, 135(28): 10492–10502

    Article  CAS  PubMed  Google Scholar 

  27. Bediako D K, Surendranath Y, Nocera D G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. Journal of the American Chemical Society, 2013, 135(9): 3662–3674

    Article  CAS  PubMed  Google Scholar 

  28. Yang L, Xie L, Ge R, Kong R, Liu Z, Asiri A M. Core-shell NiFe-LDH@NiFe-Bi nanoarray: In situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Applied Materials & Interfaces, 2017, 9 (23): 19502–19506

    Article  CAS  Google Scholar 

  29. Kurosu H, Yoshida M, Mastectomy Y, Onishi S, Abe H, Kondoh H. In situ observations of oxygen evolution cocatalysts on photoelec-trodes by X-ray absorption spectroscopy: Comparison between cobalt-phosphate and cobalt-borate. Electrochemistry, 2016, 10(84): 779–783

    Article  CAS  Google Scholar 

  30. Joya K S, Takanabe K, de Groot H J M. Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3-/CO2 system. Advanced Energy Materials, 2014, 4(16): 1400252

    Article  CAS  Google Scholar 

  31. Xie F, Wu H, Mou J, Lin D, Xu C, Wu C, Sun X. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172

    Article  CAS  Google Scholar 

  32. Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072–1075

    Article  CAS  PubMed  Google Scholar 

  33. Chen W, Wang H, Li Y, Lee J S, Cui Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. American Chemical Society Central Science, 2015, 1(5): 244–251

    CAS  PubMed  Google Scholar 

  34. Ren Z, Botu V, Wang S, Meng Y, Song W, Guo Y, Ramprasad S, Gao P, Suib S L. Monolithically integrated spinel MxCo3XO4 (M = Co, Ni, Zn) nanoarray catalysts: Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation? Angewandte Chemie International Edition, 2014, 53(160): 7223–7227

    Article  CAS  PubMed  Google Scholar 

  35. Kibsgaard J, Chen Z, Reinecke B N, Jaramilo T F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 2012, 11(11): 963–969

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Ma M, Qu F, Asiri A M, Sun X. Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation. Inorganic Chemistry, 2017, 56(3): 1041–1044

    Article  CAS  PubMed  Google Scholar 

  37. He C, Wu X, He Z. Amorphous nickel-based thin film as a janus electrocatalyst for water splitting. Journal of Physical Chemistry C, 2014, 118(9): 4578–4584

    Article  CAS  Google Scholar 

  38. Zhu Y, Liu Y, Ren T, Yuan Z. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347

    Article  CAS  Google Scholar 

  39. Meng F, Wang Z, Zhong H, Wang J, Yan J, Zhang B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Advanced Materials, 2016, 28(36): 7948–7955

    Article  CAS  PubMed  Google Scholar 

  40. Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri A M, Xiong X, Sun X. An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolyte. Nanoscale, 2017, 9(43): 16612–16615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21575137), the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (No. 16kffk04) and the Key Lab of Process Analysis and Control of Sichuan Universities (No. 2016001). We also appreciate Hui Wang from the Analytical & Testing Center of Sichuan University for her help with SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoli Xiong or Xuping Sun.

Electronic supplementary material

11705_2018_1717_MOESM1_ESM.pdf

Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Ma, M., Ji, X. et al. Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions. Front. Chem. Sci. Eng. 12, 467–472 (2018). https://doi.org/10.1007/s11705-018-1717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1717-8

Keywords

Navigation