Skip to main content
Log in

Anisotropy of the low temperature resistivity of hexagonal single crystalline spin glass systems

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The impurity contribution to the resistivity in zero field Δρ(T) of dilute hexagonal single crystals of ZnMn, CdMn and MgMn has been studied in the mK range on samples cut parallel (‖) and perpendicular (⊥) to thec-axis, using a SQUID technique for the measurements. Typical spin glass behavior is found in Δρ(T) as well as Δρ(T) for all alloys, with Kondo like logarithmic increases at higher temperatures and maxima atT m at lower temperatures, indicating the influence of impurity interactions. The differences in the corresponding isotropic resistivity Δρpoly(T) between the three systems can qualitatively be understood within the framework of a theoretical model by Larsen, describing Δρ(T) as a function of universal quantitiesT/T K and ΔRKKY/T K , where ΔRKKY is the RKKY-interaction strength andT K the Kondo temperature. With respect to the two lattice directions studied, the behavior of Δρ(T and Δρ(T is anisotropic in the Kondo regime as well as in the range where ordering becomes important. While the anisotropy in the Kondo slope can be understood by an anisotropic unitarity limit, the understanding of the anisotropy in region where impurity interactions are important remains problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, H., Wassermann, E.F., Hedgcock, F.T., Monod, P.: Phys. Rev. Lett.48, 819 (1982)

    Article  ADS  Google Scholar 

  2. Hedgcock, F.T.: J. Appl. Phys.49, 1446 (1978)

    Article  ADS  Google Scholar 

  3. Moberly, L.A., Roshko, R., Symko, O.G.: Phys. Rev.325, 4695 (1982)

    Google Scholar 

  4. Fert, A.: Physica86–88B, 491 (1977)

    Google Scholar 

  5. Asomoza, R., Fert, A., Sanchez, D.: Physica86–88B, 528 (1977)

    Google Scholar 

  6. Kästner, J., Hedgcock, F.T., Martinon, C., Wassermann, E.F.: Physica86–88B, 83 (1977)

    Google Scholar 

  7. Fert, A., Levy, P.M.: Phys. Rev. Lett.44, 1538 (1980)

    Article  ADS  Google Scholar 

  8. Muir, W.B., Stroink, G., Wassermann, E.F.: Can. J. Phys.55, 403 (1977)

    ADS  Google Scholar 

  9. Albrecht, H.: Thesis RWTH Aachen, (1981) (unpublished)

  10. Meierling, H.: Diplomarbeit Universität Duisburg (1981) (unpublished)

  11. Kästner, J., Wassermann, E.F.: J. Low Temp. Phys.29, 411 (1977)

    Article  ADS  Google Scholar 

  12. Claeson, T., Hanson, M., Ivarson, J.: Solid State Commun.20, 233 (1976)

    Article  ADS  Google Scholar 

  13. Alloul, H., Deltour, R., Clad, R.: J. Phys. Soc. Jpn.28, 661 (1970)

    ADS  Google Scholar 

  14. Larsen, U.: Solid State Commun.27, 943 (1978)

    Article  ADS  Google Scholar 

  15. Hedcock, F.T., Muto, Y.: Phys. Rev.134A, 1593 (1964)

    Article  ADS  Google Scholar 

  16. Ford, P., Mydosh, J.A.: Phys. Rev. B.14, 2057 (1976)

    Article  ADS  Google Scholar 

  17. Fischer, K.: Z. Phys. B-Condensed Matter34, 45–53 (1979)

    ADS  Google Scholar 

  18. Laborde, O.: Thesis: Grenoble (1977) (unpublished)

  19. Buchmann, R., Falke, H., Jablonski, H.P., Wassermann, E.F.: Phys. Rev. B17, 4315 (1978)

    Article  ADS  Google Scholar 

  20. Lawson, N.S., Guenault, A.M.: J. Phys. F.: Met. Phys.12, 1407 (1982)

    Article  ADS  Google Scholar 

  21. Harris, R., Mulimani, B.G., Zuckermann, M.J.: Phys. Cond. Mater.19, 269 (1975)

    Article  Google Scholar 

  22. Mulimani, B.G.: Thesis McGill University, Montreal/Canada (1976) (unpublished)

  23. Daybell, M.D., Steyert, W.A.: Phys. Rev. Lett.18, 398 (1967)

    Article  ADS  Google Scholar 

  24. Daybell, M.D., Yeo, Y.K.: Bull. Am. Phys. Soc.16, 840 (1971)

    Google Scholar 

  25. Souletie, J.: A.I.P. Conf.29, 294 (1975)

    Article  ADS  Google Scholar 

  26. For a valence difference of ΔZ=2 of the present system a value δv=π/2 cannot be achieved

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. S. Methfessel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, H., Meierling, H., Wassermann, E.F. et al. Anisotropy of the low temperature resistivity of hexagonal single crystalline spin glass systems. Z. Physik B - Condensed Matter 49, 213–220 (1982). https://doi.org/10.1007/BF01313029

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313029

Keywords

Navigation